

Version 6.0

1. Getting started

2. System Architecture

3. OXID eShop components

4. Module resources

5. Theme resources

6. Update

7. Conventions for writing developer documentation

8. Glossary

https://docs.oxid-esales.com/developer/en/6.0/

Edit on GitHub

Next

Docs » Welcome to OXID eShop developer documentation!

WELCOME TO OXID ESHOP DEVELOPER
DOCUMENTATION!

READING THIS DOCUMENTATION

We use some OXID specific term in this documentation. Please have a look at the Glossary

for terms used in this documentation.

TABLE OF CONTENTS

Getting started

System Architecture

OXID eShop components

Module resources

Theme resources

Update

HELP IMPROVING THIS DOCUMENTATION

You can contribute to this documentation by creating a pull request on the repository of

this documentation. Conventions for writing documentation can be found here.

USEFUL LINKS

OXIDforge Tutorials

OXID eShop Forum

OXID eShop source code documentation

OXID eShop developer documentation

2018-02-21 1

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/index.rst
https://github.com/OXID-eSales/developer_documentation
https://github.com/OXID-eSales/developer_documentation
https://github.com/OXID-eSales/developer_documentation
https://github.com/OXID-eSales/developer_documentation
https://github.com/OXID-eSales/developer_documentation
https://github.com/OXID-eSales/developer_documentation
https://github.com/OXID-eSales/developer_documentation
https://github.com/OXID-eSales/developer_documentation
http://wiki.oxidforge.org/Tutorials
http://wiki.oxidforge.org/Tutorials
http://wiki.oxidforge.org/Tutorials
http://forum.oxid-esales.com/
http://forum.oxid-esales.com/
http://forum.oxid-esales.com/
http://forum.oxid-esales.com/
http://forum.oxid-esales.com/
https://docs.oxid-esales.com/sourcecodedocumentation/
https://docs.oxid-esales.com/sourcecodedocumentation/
https://docs.oxid-esales.com/sourcecodedocumentation/
https://docs.oxid-esales.com/sourcecodedocumentation/
https://docs.oxid-esales.com/sourcecodedocumentation/
https://docs.oxid-esales.com/sourcecodedocumentation/
https://docs.oxid-esales.com/sourcecodedocumentation/
https://docs.oxid-esales.com/sourcecodedocumentation/
https://docs.oxid-esales.com/sourcecodedocumentation/

Edit on GitHub

Next

Docs » Getting started

GETTING STARTED

This section describes the main steps you have to follow in order to install an OXID the

eShop and get familiar with it.

Installation

Environment preparation

Install OXID eShop compilation

Install OXID eShop compilation on servers, where Composer is not available

Troubleshooting

In order to extend the OXID eShop with modules and themes or know how to use a
module and theme, have a look at the sections Module resources and Theme resources.

Previous

© Copyright 2017 - 2018, OXID eSales AG.

OXID eShop developer documentation

2018-02-21 2

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/getting_started/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/getting_started/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/getting_started/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/getting_started/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/getting_started/index.rst

Edit on GitHub

Next

Docs » Getting started » Installation

INSTALLATION

Environment preparation

Install OXID eShop compilation

Install OXID eShop compilation on servers, where Composer is not available

Troubleshooting

Previous

© Copyright 2017 - 2018, OXID eSales AG.

OXID eShop developer documentation

2018-02-21 3

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/getting_started/installation/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/getting_started/installation/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/getting_started/installation/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/getting_started/installation/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/getting_started/installation/index.rst

Edit on GitHub

Next

Docs » Getting started » Installation » Environment preparation

ENVIRONMENT PREPARATION

Documentation which describes how to prepare OXID eShop for development purposes

can be found here: https://github.com/OXID-eSales/oxvm_eshop

Previous

© Copyright 2017 - 2018, OXID eSales AG.

OXID eShop developer documentation

2018-02-21 4

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/getting_started/installation/environment_preparation.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/getting_started/installation/environment_preparation.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/getting_started/installation/environment_preparation.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/getting_started/installation/environment_preparation.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/getting_started/installation/environment_preparation.rst
https://github.com/OXID-eSales/oxvm_eshop

Edit on GitHubDocs » Getting started » Installation » Install OXID eShop compilation

INSTALL OXID ESHOP COMPILATION

Please, install the OXID eShop compilation performing the following steps:

Step 1: Deploy source code and install project dependencies

Step 2: Configure the HTTP server

Step 3: Adapt file and directory permissions

Step 4: Run the graphical setup

STEP 1: DEPLOY SOURCE CODE AND INSTALL
PROJECT DEPENDENCIES

The recommended way to obtain the source code of OXID eShop and to install the

project dependencies is to use Composer. You will find details how to install and use

Composer here. Please make sure to have a sufficient understanding of how Composer

works before proceeding.

If by any reason you are not able to use Composer to install OXID eShop or one of its
modules on a specific application server, please skip this step and read these

instructions to learn how to deploy the source code using an alternative way.

Depending on the edition of OXID eShop you want to install, run one the following

commands in the command line interface of your operating system.

If you install OXID eShop for module development, remember we recommend using

oxVM for development, but if by any reason you need the OXID eSales development

tools to be installed, remove the –no-dev option in the commands below.

Note

OXID eShop developer documentation

2018-02-21 5

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/getting_started/installation/eshop_installation.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/getting_started/installation/eshop_installation.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/getting_started/installation/eshop_installation.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/getting_started/installation/eshop_installation.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/getting_started/installation/eshop_installation.rst
https://getcomposer.org/doc/00-intro.md

For OXID eShop Professional Edition or OXID eShop Enterprise Edition, you need to
enter the credentials you should have received when purchasing the product.

For Community Edition:

For Professional Edition:

For Enterprise Edition:

When the Composer has finished successfully, a new directory will have been created

in your working directory. It is called your_project_name in this example and it is
referred to as project root directory.

The project root directory contains all files, which are needed to continue with the

installation of OXID eShop.

Watch out for error messages during the installation
progress.

See our troubleshooting section for solutions.

Note

If you install the compilation without the –no-dev option, the following development

tools will be installed together with OXID eShop:

OXID eShop Testing Library

IDE code completion support for OXID eShop

OXID Coding Standards

Azure Theme for selenium tests

TECHNICAL DETAILS

composer create-project --no-dev oxid-esales/oxideshop-project your_project_name
dev-b-6.0-ce

composer create-project --no-dev oxid-esales/oxideshop-project your_project_name
dev-b-6.0-pe

composer create-project --no-dev oxid-esales/oxideshop-project your_project_name
dev-b-6.0-ee

2018-02-21 6

https://github.com/OXID-eSales/testing_library
https://github.com/OXID-eSales/testing_library
https://github.com/OXID-eSales/testing_library
https://github.com/OXID-eSales/oxid-eshop-ide-helper
https://github.com/OXID-eSales/oxid-eshop-ide-helper
https://github.com/OXID-eSales/oxid-eshop-ide-helper
https://github.com/OXID-eSales/oxid-eshop-ide-helper
https://github.com/OXID-eSales/oxid-eshop-ide-helper
https://github.com/OXID-eSales/oxid-eshop-ide-helper
https://github.com/OXID-eSales/oxid-eshop-ide-helper
https://github.com/OXID-eSales/coding_standards
https://github.com/OXID-eSales/coding_standards
https://github.com/OXID-eSales/coding_standards
https://github.com/OXID-eSales/azure_theme
https://github.com/OXID-eSales/azure_theme
https://github.com/OXID-eSales/azure_theme

Composer will automatically download the source files of the specified version and

edition of OXID eShop.

In a second step it will install fixed versions of the project dependencies as defined in
the meta package of the installed edition of OXID eShop.

After Composer installed all dependencies, it executes several tasks. One of them is to
generate the classes of the unified namespace \OxidEsales\Eshop.

STEP 2: CONFIGURE THE HTTP SERVER

Move the project root directory to a directory accessible by your HTTP server. Configure

the servers public document root to point to the source directory of the project root

directory

STEP 3: ADAPT FILE AND DIRECTORY PERMISSIONS

The following directories and its subdirectories must always be writable by the HTTP

server during the run time:

./source/export

./source/log/

./source/out/pictures/

./source/out/media/

./source/tmp/

For the next step, the graphical setup, the following files and directories must be

writable for the HTTP server:

./source/Setup

./source/config.inc.php

./source/.htaccess

Note

In a development environment, the easiest way to adapt permissions, is to run

STEP 4: RUN THE GRAPHICAL SETUP

sudo chmod 777 -R source/config.inc.php source/.htaccess source/tmp/ source/log/
source/out/pictures/ source/out/media/ source/export

2018-02-21 7

Open http(s)://<your shop URL>/Setup in your browser and follow the

instructions of the graphical setup.

At the end of the installation process, the directory ./source/Setup is deleted.

After the graphical setup, please set the following files to read-only for the HTTP server:

./source/config.inc.php

./source/.htaccess

Note

As the file ./source/config.inc.php contains database credentials, you should consider

to restrict read access to the HTTP server.

ACTIVATE PRE-INSTALLED MODULES

None of the bundled modules is activated by default during the setup. Please refer to the

documentation you find inside the module directory about system requirements and

configuration of each module.

INSTALL MORE MODULES AND MODULE
DEPENDENCIES

After the installation, you may proceed with the installation of some of the many

modules the OXID eco system provides. Refer to the installation instructions of each of

the modules.

Keep in mind that some OXID eShop modules may have special requirements, which

may go beyond the system requirements of a standard installation of OXID eShop.

These requirements may either be installable via Composer or may require the

installation of certain PHP extensions or even system libraries. In any case, the authors

of the modules will have provided you with all necessary information about these

requirements and how to install them on your application server.

KNOWN ISSUE ON MACOS

If you get the following error in the migrations while installing the OXID eShop on a
MAMP [PDOException] SQLSTATE[HY000] [2002] No such file or directory

Look at this blog entry and do the following steps:

2018-02-21 8

https://andreys.info/blog/2007-11-07/configuring-terminal-to-work-with-mamp-mysql-on-leopard
https://andreys.info/blog/2007-11-07/configuring-terminal-to-work-with-mamp-mysql-on-leopard
https://andreys.info/blog/2007-11-07/configuring-terminal-to-work-with-mamp-mysql-on-leopard
https://andreys.info/blog/2007-11-07/configuring-terminal-to-work-with-mamp-mysql-on-leopard
https://andreys.info/blog/2007-11-07/configuring-terminal-to-work-with-mamp-mysql-on-leopard

HINTS FOR DEVELOPMENT

ALWAYS USE COMPOSERS’ –NO-PLUGINS SWITCH

It is a good practice to run all Composer commands, which update components with

the –no-plugins option and to run update action in a separate command. Like this it is
ensured, that the latest versions of the plugins are used.

Examples:

TEMPORARILY ADD COMPOSER DEPENDENCIES

In general you should extended the functionality of OXID eShop by writing modules,

which provide there own dependency management. See module section for details.

Nevertheless, for a quick hack or a proof of concept, additional dependencies could be

added via the composer.json file in the project root directory.

For example, if there is a need to add runtime library like monolog run:

If there is a need to add a development dependency like the OXID eShop testing library:

sudo mkdir /var/mysql
sudo ln -s /Applications/MAMP/tmp/mysql/mysql.sock /var/mysql/mysql.sock
sudo chown _mysql /var/mysql/mysql.sock
sudo chmod 777 /var/mysql/mysql.sock

Update all components including Composer plugins to their latest version
composer update --no-plugins

execute plugins in their latest version
composer update

Install new component and update dependencies including Composer plugins to the
required version
composer require --no-plugins monolog/monolog
composer install # execute the plugins in their required version

composer require --no-plugins monolog/monolog
composer install

composer require --dev --no-plugins oxid-esales/testing-library:dev-master
composer update

2018-02-21 9

RESOLVING COMPOSER DEPENDENCY CONFLICTS

The meta package defines, which exact versions of the components will be installed by

Composer. These versions have been tested by OXID eSales to ensure, that OXID eShop

works as expected and to avoid security issues. There might be situations, where a 3rd

party dependency conflicts with the version defined in the meta package. You may resolve

this version conflict by adding an alias in the project composer.json file in the project root

directory like this:

This lowers doctrine cache version to v1.6.0 even while the meta package requires v1.6.1.

See the documentation or this issue in GitHub for details

BUILDING YOUR OWN COMPILATION

A meta package defines the kind and versions of components of a compilation. You may

want build your own compilation for two reasons:

To re-define the components of a compilation:

Create a new meta package by using the existing one as a template

Re-define the components and their versions

Require different versions of existing components

Remove predefined components

Require new components

To add new components to the compilation:

Create a new meta package

Require new components

Require the existing meta package in the newly created meta package

Make this new meta package available through Packagist, GitHub, file system or any other

supported way.

Edit the composer.json file in the project root directory and require the new meta package

instead of default one.

{
 "require": {
 "doctrine/cache":"v1.6.0 as v1.6.1"
 }
}

2018-02-21 10

https://getcomposer.org/doc/articles/aliases.md#require-inline-alias
https://getcomposer.org/doc/articles/aliases.md#require-inline-alias
https://getcomposer.org/doc/articles/aliases.md#require-inline-alias
https://github.com/composer/composer/issues/3387
https://github.com/composer/composer/issues/3387
https://github.com/composer/composer/issues/3387
https://github.com/composer/composer/issues/3387
https://github.com/composer/composer/issues/3387
https://github.com/composer/composer/issues/3387
https://github.com/composer/composer/issues/3387
https://getcomposer.org/doc/05-repositories.md#packages
https://getcomposer.org/doc/05-repositories.md#vcs
https://getcomposer.org/doc/05-repositories.md#path
https://getcomposer.org/doc/05-repositories.md#path
https://getcomposer.org/doc/05-repositories.md#path
https://getcomposer.org/doc/05-repositories.md#git-alternatives
https://getcomposer.org/doc/05-repositories.md#git-alternatives
https://getcomposer.org/doc/05-repositories.md#git-alternatives
https://getcomposer.org/doc/05-repositories.md#git-alternatives
https://getcomposer.org/doc/05-repositories.md#git-alternatives
https://getcomposer.org/doc/05-repositories.md#git-alternatives

NextPrevious

© Copyright 2017 - 2018, OXID eSales AG.

2018-02-21 11

Edit on GitHub

Docs » Getting started » Installation »
Install OXID eShop compilation on servers, where Composer is not available

INSTALL OXID ESHOP COMPILATION ON
SERVERS, WHERE COMPOSER IS NOT
AVAILABLE

We strongly recommend to install OXID eShop via Composer on the application server! But

if Composer is not available for example on a “shared hosting” web space or in a high-

security environment, it is still possible to install or deploy OXID eShop. This solution

requires more effort and also some knowledge about Composer, as you have to run the

Composer commands on one machine and then copy the files over to the application

server.

The process is roughly:

Set up a local environment

Deploy the source code and install project dependencies in the local environment

Prepare the generated files for deployment on the remote server (UNIX-based only)

Copy the files to the application server and continue installation

Managing modules and module dependencies

SET UP A LOCAL ENVIRONMENT

As a first step set up a local environment. For the sake of simplicity we call this

environment local, but it can also be a remote machine, a docker container, a virtual

machine or any other installation where you have sufficient access rights to install and run

executable files.

This local environment should be as similar as possible to the server, where OXID eShop

should finally be installed or deployed. Especially the PHP stack and the required system

libraries should be identical to the stack of the application server. Keep in mind that even

OXID eShop developer documentation

2018-02-21 12

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/getting_started/installation/eshop_installation_without_composer.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/getting_started/installation/eshop_installation_without_composer.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/getting_started/installation/eshop_installation_without_composer.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/getting_started/installation/eshop_installation_without_composer.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/getting_started/installation/eshop_installation_without_composer.rst

differences in patch versions may matter. So it is really important to keep the local

environment and the application server in sync in order be able to copy files from one

system to another. Failing to do so may lead to errors that might hard to detect during the

runtime of OXID eShop.

Make sure to have a working Composer installation on this local environment. You will find

details how to install and use Composer here. Please make also sure you have a sufficient

understanding of how Composer works before proceeding.

DEPLOY THE SOURCE CODE AND INSTALL PROJECT
DEPENDENCIES IN THE LOCAL ENVIRONMENT

On your local environment, follow the installation instructions, section Step 1: Deploy

source code and install project dependencies. After this step has been completed without

errors, you will find a new directory in your current directory. This new directory is called

your_project_name in the example, but you may have chosen a different name. In this

documentation we will call this directory project root directory.

PREPARE THE GENERATED FILES FOR DEPLOYMENT
ON THE REMOTE SERVER (UNIX-BASED ONLY)

Users of Windows servers can skip this step, as Composer does not create symbolic links

on Windows based systems.

On UNIX based systems, Composers creates symbolic links in the directory project root

directory/vendor/bin/, which cannot be just copied to a remote system like plain files.

There are at least two possible solutions to overcome this issue:

1. Consider archiving the files using the tar-command on your local machine:

If you have shell access to the remote server you can use this command to extract the tar

archive, and also the symbolic links will be extracted:

2. In case you have no shell access on the remote server, you have to delete the symbolic

create tar archive in the local environment
tar -cvzf oxid-eshop.tar.gz <project root directory>

extract tar archive on the application server
tar -xvzf oxid-eshop.tar.gz

2018-02-21 13

https://getcomposer.org/doc/00-intro.md

links and to manually create alternative files on your local machine, which have to be

copied to the application server. Please note that this will only work from a UNIX based

system as your local development environment.

COPY THE FILES TO THE APPLICATION SERVER AND
CONTINUE INSTALLATION

Copy the project root directory to your application server and set all files in the vendor/bin

directory to be executable. Then finish the installation on the application server starting

with Step 2 of the standard installation instructions.

MANAGING MODULES AND MODULE DEPENDENCIES

Some OXID eShop modules are installable via Composer or may require some 3rd party

components (e.g. monolog/monolog) to be installed via Composer.

cd <project root directory>

rm vendor/bin/*

cat << 'EOF' >> vendor/bin/oe-eshop-db_views_generate
#!/usr/bin/env sh

dir=$(d=${0%[/\\]*}; cd "$d" > /dev/null; cd "../oxid-esales/oxideshop-db-views-
generator" && pwd)

dir=$(echo $dir | sed 's/ /\ /g')
"${dir}/oe-eshop-db_views_generate" "$@"
EOF

cat << 'EOF' >> vendor/bin/oe-eshop-demodata_install
#!/usr/bin/env sh

dir=$(d=${0%[/\\]*}; cd "$d" > /dev/null; cd "../oxid-esales/oxideshop-demodata-
installer/bin" && pwd)

dir=$(echo $dir | sed 's/ /\ /g')
"${dir}/oe-eshop-demodata_install" "$@"
EOF

cat << 'EOF' >> vendor/bin/oe-eshop-doctrine_migration
#!/usr/bin/env sh

dir=$(d=${0%[/\\]*}; cd "$d" > /dev/null; cd "../oxid-esales/oxideshop-doctrine-
migration-wrapper/bin" && pwd)

dir=$(echo $dir | sed 's/ /\ /g')
"${dir}/oe-eshop-doctrine_migration" "$@"
EOF

2018-02-21 14

Next

To install these modules or their dependencies, follow the same strategy: Install them in a
local environment following the installation instructions of the module and then copy the

newly installed files to the application server.

All files, which are managed by Composer live inside a subdirectory of project root

directory called vendor. The contents of this directory and all its subdirectories may

completely change with every execution of composer require or composer
update, so it is a good practice to always completely replace this directory on the

server.

Continue the installation procedure (copy modules files, configure module, etc.) on the

application server.

Previous

© Copyright 2017 - 2018, OXID eSales AG.

2018-02-21 15

Edit on GitHubDocs » Getting started » Installation » Troubleshooting

TROUBLESHOOTING

I AM ASKED FOR A GITHUB TOKEN

By default github has API access limits set for anonymous access. In order to overcome

these limits one has to create a github token, which could be done as described in:

https://help.github.com/articles/creating-an-access-token-for-command-line-use/

I GET A
COMPOSER\DOWNLOADER\TRANSPORTEXCEPTION

During the installation of OXID eShop Professional or Enterprise Edition you get the

following error:

You may have stored some outdated or wrong credentials. Please review <your home

directory>/.composer/auth.json and delete the section, which begins with “professional-

edition.packages.oxid-esales.com” resp. “enterprise-edition.packages.oxid-esales.com”

I AM ASKED “DO YOU WANT TO REMOVE THE
EXISTING VCS (.GIT, .SVN..) HISTORY? [Y,N]”

In general you can say “Yes”. It is not normally important to keep VCS history locally. You

can always look it up on github.

THERE WAS AN ERROR DURING THE EXECUTION OF
THE UNIFIED NAMESPACE GENERATOR

[Composer\Downloader\TransportException]
Invalid credentials for 'https://enterprise-edition.packages.oxid-esales.com/packages.json',
aborting.

OXID eShop developer documentation

2018-02-21 16

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/getting_started/installation/troubleshooting.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/getting_started/installation/troubleshooting.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/getting_started/installation/troubleshooting.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/getting_started/installation/troubleshooting.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/getting_started/installation/troubleshooting.rst
https://help.github.com/articles/creating-an-access-token-for-command-line-use/

Next

If the generation of the unified namespace classes fails, OXID eShop will not run properly.

In this case you should look here for possible fixes.

Previous

© Copyright 2017 - 2018, OXID eSales AG.

2018-02-21 17

Edit on GitHub

Next

Docs » System Architecture

SYSTEM ARCHITECTURE

Autoloading Of Classes

Multiple Languages

Unified Namespace Classes

Previous

© Copyright 2017 - 2018, OXID eSales AG.

OXID eShop developer documentation

2018-02-21 18

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/system_architecture/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/system_architecture/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/system_architecture/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/system_architecture/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/system_architecture/index.rst

Edit on GitHubDocs » System Architecture » Autoloading Of Classes

AUTOLOADING OF CLASSES

Currently shop has three autoloaders registered: Composer autoloader, Backwards

Compatibility Autoloader and Module Autoloader. They are registered in exactly this order

in the file bootstrap.php .

GENERAL WORKFLOW

If you request a class, then first the Composer autoloader is asked, after that the

Backwards Compatibility Autoloader and in the end the Module Autoloader:

COMPOSER AUTOLOADER

It is the first autoloader in line and tries to to autoload all namespaced classes, which are

configured in the root composer.json file or child composer.json files. An example of a class

which would be resolved by this autoloader is OxidEsales\Eshop\Application\Model\Article .

BACKWARDS COMPATIBILITY AUTOLOADER

Its purpose is to autoload all deprecated shop classes which are defined in the file
Core/Autoload/BackwardsCompatibilityAutoload.php . This is not a real autoloader: If a backwards

OXID eShop developer documentation

2018-02-21 19

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/system_architecture/autoloading.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/system_architecture/autoloading.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/system_architecture/autoloading.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/system_architecture/autoloading.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/system_architecture/autoloading.rst

Next

compatibility class from Core/Autoload/BackwardsCompatibilityAutoload.php is requested, this

autoloader searches the Unified Namespace equivalent of the backwards compatible class

and hands the request over to the Composer autoloader. If you request e.g. the backwards

compatiblity class oxArticle , this autoloader would resolve the class to its unified

namespace equivalent OxidEsales\Eshop\Application\Model\Article and trigger the composer

autoloader.

Module Autoloader

This autoloader is responsible for loading module classes (defined in metadata as module

files and extensions). It first checks if given class exists in any of active modules module

file. If so - this class is included and it stops here. If not - it tries to check whether it is an

extension of any active module, as modules can extend other module classes. This is also

the case when extension is created via new ExtendedClass instead of oxNew , and as

ExtendedClass_parent class does not exist, it has to be created at this point.

Previous

© Copyright 2017 - 2018, OXID eSales AG.

2018-02-21 20

Edit on GitHubDocs » System Architecture » Multiple Languages

MULTIPLE LANGUAGES

DATABASE STRUCTURE

OXID eShop can be configured to handle multiple languages. Some input fields in OXID

eShop can be translated into multiple languages, some not. An example for an input field

which can be translated is the title of an article. In the database the title of an article is
stored in the column oxtitle of the table oxarticles. If you configure two languages, de and

en, both the de and the en contents have to be stored somewhere. This is done by using

another column, the column oxtitle_1 in the table oxarticles. In generel OXID eShop stores

translations by adding more columns, tables and views to the database if you configure

more languages.

Every language has a numeric id. The data for language id 0 goes into oxarticles.oxtitle,

data for language id 1 into oxarticles.oxtitle_1, language 2 into oxarticles.oxtitle_2,

language 3 into oxarticles.oxtitle_3. The above mentioned columns are the default

available columns of OXID eShop. This means by default, OXID eShop has enough

columns to handle up to four languages.

If you configure a fith language, the column oxarticles.oxtitle_5 will be added to the

database.

From language id 9 on, a new extension table for the table oxarticles is created. This table

is named oxarticles_set1 in our example and has the column oxarticles_set1.oxtitle_8.

The column oxarticles_set1.OXID matches oxarticles.OXID.

OXID eShop developer documentation

2018-02-21 21

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/system_architecture/language.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/system_architecture/language.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/system_architecture/language.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/system_architecture/language.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/system_architecture/language.rst

Next

Note

If there is no information yet set for the article title in language id >=8 , there is no entry in
the *_set* table. So a view trying to use that nonexisting data contains NULL value fields.

ACCESSING VALUES OF MULTILANGUAGE FIELDS

The retrieval of the correct language for the an articles title oxtitle is done with database

views. We have views per subshop and language for each table containing multilingual

data. After adding (and deleting as well) a language, views have to be regenerated.

Note

when creating multiple new languages in a row without explicitly updating the views in
between, we’ll have all views available except the ones for the last added language.

Point is now, that when the shop is switched to a certain language (that is active in
frontend) and we load an article object $article , then when accessing

$article->oxarticles__oxtitle we actually get the data for the currently active language.

More spcific: assume we have an EE and use subshop 1. So when we have language id 9
active (let’s name it language de), the article title originates from the core table

oxarticles_set1.oxtitle_9, this info ends up in oxv_oxarticle_1_de.oxtitle and the article

object is loaded from oxv_oxarticle_1_de.

If there’s anything amiss with the way the views are created, we get incorrect language

data or in the worst case, shop goes offline.

Previous

© Copyright 2017 - 2018, OXID eSales AG.

2018-02-21 22

Edit on GitHubDocs » System Architecture » Unified Namespace Classes

UNIFIED NAMESPACE CLASSES

The Unified Namespace (OxidEsales\Eshop) provides an edition independent namespace

for module and core developers. So disregarding if the shop edition is CE/PE/EE, the

Unified Namespace class name is to be used in code (core and modules).

GENERATION OF UNIFIED NAMESPACE CLASSES

The component unified-namespace-generator generates the unified namespace classes

on the fly, e.g. when you install or update the OXID eShop.

INHERITANCE CHAIN OF UNIFIED NAMESPACE
CLASSES

EXAMPLE OXID ESHOP PROFESSIONAL EDITION

EXAMPLE OXID ESHOP ENTERPRISE EDITION

OXID eShop developer documentation

2018-02-21 23

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/system_architecture/namespaces.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/system_architecture/namespaces.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/system_architecture/namespaces.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/system_architecture/namespaces.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/system_architecture/namespaces.rst

Next

Warning

Do NOT use the PHP method get_class as its return value is dependent on the modules

which are currently activated in the shop:

Previous

© Copyright 2017 - 2018, OXID eSales AG.

// returns Vendor1\Module2\Application\Model\Article in this example
get_class(oxNew(OxidEsales\Eshop\Application\Model\Article::class));

2018-02-21 24

Edit on GitHub

Next

Docs » OXID eShop components

OXID ESHOP COMPONENTS

Components are parts of an OXID eShop installation. They are needed to run, configure or

update an OXID eShop.

Migrations

Unified Namespace Generator

Previous

© Copyright 2017 - 2018, OXID eSales AG.

OXID eShop developer documentation

2018-02-21 25

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/oxid_components/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/oxid_components/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/oxid_components/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/oxid_components/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/oxid_components/index.rst

Edit on GitHubDocs » OXID eShop components » Migrations

MIGRATIONS

OXID eShop uses database migrations for eShop setup and updates. Migration tool can be

used for project specific migrations too.

INFRASTRUCTURE

At the moment OXID eShop uses “Doctrine 2 Migrations” and it’s integrated via OXID

eShop migration components.

Doctrine Migrations runs migrations with a single configuration. There is a need to run

several configurations (suites) of migrations for OXID eShop project. For example one for

Community Edition, one for Enterprise Edition and one for a project. For this reason OXID

eShop Doctrine Migration Wrapper was created.

Doctrine Migration Wrapper needs some information about the OXID eShop installation

like:

what edition is active

what are credentials for database

This information is gathered from OXID eShop Facts. Facts has a class which can provide

an information about OXID eShop and it’s environment. This component is Shop

independent and can be used without bootstrap. The only restriction is to have

config.inc.php file configured.

USAGE

RUNNING MIGRATIONS - CLI

OXID eShop developer documentation

2018-02-21 26

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/oxid_components/migrations.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/oxid_components/migrations.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/oxid_components/migrations.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/oxid_components/migrations.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/oxid_components/migrations.rst
https://github.com/OXID-eSales/oxideshop-doctrine-migration-wrapper
https://github.com/OXID-eSales/oxideshop-doctrine-migration-wrapper
https://github.com/OXID-eSales/oxideshop-doctrine-migration-wrapper
https://github.com/OXID-eSales/oxideshop-doctrine-migration-wrapper
https://github.com/OXID-eSales/oxideshop-doctrine-migration-wrapper
https://github.com/OXID-eSales/oxideshop-doctrine-migration-wrapper
https://github.com/OXID-eSales/oxideshop-doctrine-migration-wrapper
https://github.com/OXID-eSales/oxideshop-doctrine-migration-wrapper
https://github.com/OXID-eSales/oxideshop-facts
https://github.com/OXID-eSales/oxideshop-facts
https://github.com/OXID-eSales/oxideshop-facts
https://github.com/OXID-eSales/oxideshop-facts
https://github.com/OXID-eSales/oxideshop-facts

Script to run migrations is registered to composer bin directory. It accept two parameters:

Doctrine command

Edition

This command will run all the migrations which are in OXID eShop specific directories. For

example if you have OXID eShop Enterprise edition, migration tool will run migrations in
this order:

Community Edition migrations

Professional Edition migrations

Enterprise Edition migrations

Project specific migrations

In case you have Community Edition:

Community Edition migrations

Project specific migrations

It is also possible to run migrations for specific suite by defining environment variable -
MIGRATION_SUITE. This variable defines what type of migration it is. There are 4
types:

PR - For project specific migrations. It should be always used for project development.

CE - Generates migration file for OXID eShop Community Edition. It’s used for

product development only.

PE - Generates migration file for OXID eShop Professional Edition. It’s used for

product development only.

EE - Generates migration file for OXID eShop Enterprise Edition. It’s used for

product development only.

GENERATE MIGRATION

This command will create shop views by current eShop version, edition and configuration.

It is a good practice to run it right after migrations command.

vendor/bin/oe-eshop-db_migrate migrations:migrate

vendor/bin/oe-eshop-db_migrate migrations:generate

2018-02-21 27

Next

GENERATE MIGRATION FOR A SINGLE SUITE

This command will generate new migration. Migration class will be generated to specific

directory according MIGRATION_SUITE variable. In this case it will be generated in
source/migration/project_data/ directory.

RUN DOCTRINE 2 MIGRATIONS COMMANDS

Sometimes there will be a need to run doctrine specific commands. To do so run Doctrine

Migrations command:

For example, you would like to get the list of doctrine migrations available commands:

More information on how to use Doctrine 2 Migrations can be found in official

documentation page: http://docs.doctrine-project.org/projects/doctrine-

migrations/en/latest/

USING DOCTRINE MIGRATIONS WRAPPER

Doctrine Migration Wrapper is written in PHP and could be used without command line

interface. To do so:

Create Migrations object with MigrationsBuilder->build()

Call execute method with needed parameters

Previous

© Copyright 2017 - 2018, OXID eSales AG.

vendor/bin/oe-eshop-db_migrate migrations:generate PR

vendor/bin/oe-eshop-db_migrate DOCTRINE_COMMAND

vendor/bin/oe-eshop-db_migrate

2018-02-21 28

http://docs.doctrine-project.org/projects/doctrine-migrations/en/latest/
http://docs.doctrine-project.org/projects/doctrine-migrations/en/latest/

Edit on GitHubDocs » OXID eShop components » Unified Namespace Generator

UNIFIED NAMESPACE GENERATOR

See github-repository

This component is responsible for creating the classes of the namespace OxidEsales\Eshop

which are called unified namespace classes.

WHEN DO THE UNIFIED NAMESPACE CLASSES GET
GENERATED?

The unified namespace generator implements a composer plugin and a standalone script.

It generates the unified namespace classes on the fly, e.g. when you install or update the

OXID eShop:

The generation of unified namespace classes is triggered by running

composer create-project with the OXID eShop metapackage

composer install

composer update. If you want to be sure, to get no errors because of an old version

of the unified-namespace-generator, first run composer update --no-plugins --

no-scripts and afterwards composer update. If you directly execute first

composer update, you may encounter errors. In this case, run again composer

update and the errors should go away.

composer require. If you want to be sure, to get no errors because of an old version

of the unified-namespace-generator, first run composer require --no-update

and afterwards composer update.

reset-shop

by manually executing vendor/bin/oe-eshop-

unified_namespace_generator

OXID eShop developer documentation

2018-02-21 29

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/oxid_components/unified_namespace_generator.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/oxid_components/unified_namespace_generator.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/oxid_components/unified_namespace_generator.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/oxid_components/unified_namespace_generator.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/oxid_components/unified_namespace_generator.rst
https://github.com/OXID-eSales/oxideshop-unified-namespace-generator

Next

MODE OF OPERATION

Given the example you run the following command:

By triggering the generation with other commands the steps 1 and 2 can be different.

1. Download and install all libraries to the folder vendor

2. oxideshop-unified-namespace-generator is executed by the composer event

POST_INSTALL

3. Collect the files Core/Autoload/UnifiedNamespaceClassMap.php from each installed edition. Collect the file

Core/Autoload/BackwardsCompatibilityClassMap.php from OXID eShop Community Edition

4. Generate the unified namespace classes and write them to the folder

vendor/oxid-esales/oxideshop-unified-namespace-generator/generated . There should be one unified namespace

class for every class in the OXID eShop edition.

SEARCHING FOR ERRORS

If you get either errors

by calling on of the commands of this section or

you get a message that a unified namespace class could not be found like

Then, you should read the following steps in order to find the reason for the error:

1. Have a look at the directory vendor/oxid-esales/oxideshop-unified-namespace-generator/generated

2. Are the unified namespace classes inside this directory, have the correct namespace and

extend the correct edition class?

3. Be sure, the directory has write permissions

4. Execute the command vendor/bin/oe-eshop-

unified_namespace_generator manually and look for errors

5. Be sure, the requirements as stated in Mode Of Operation are fulfilled

Previous

composer create-project --no-dev oxid-esales/oxideshop-project my_oxid_eshop_project
dev-b-6.0-ce

Class OxidEsales\Eshop\Core\ConfigFile not found in bootstrap.php on line 18

2018-02-21 30

Edit on GitHub

Next

Docs » Module resources

MODULE RESOURCES

OXID eShop modules are the prefered way of extending and customizing the OXID eShop

to your needs. In this section you’ll find all the necessary information to use modules,

understand how they work and how to write a module by yourself.

A first step on developing your own module could be the tutorial Steps for creating a basic

module.

The following sections all refer to implementing, understanding or using modules:

Module skeleton: metadata, composer and structure

Testing

Interacting with the database

Using namespaces

Tutorials and recipes

Good practices

Module Certification

Previous

© Copyright 2017 - 2018, OXID eSales AG.

OXID eShop developer documentation

2018-02-21 31

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/index.rst
https://docs.oxid-esales.com/developer/en/6.0/modules/using_database.html
https://docs.oxid-esales.com/developer/en/6.0/modules/using_database.html
https://docs.oxid-esales.com/developer/en/6.0/modules/using_database.html
https://docs.oxid-esales.com/developer/en/6.0/modules/using_database.html
https://docs.oxid-esales.com/developer/en/6.0/modules/using_database.html
https://docs.oxid-esales.com/developer/en/6.0/modules/using_database.html
https://docs.oxid-esales.com/developer/en/6.0/modules/using_database.html
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html

Next

Edit on GitHub

Docs » Module resources » Module skeleton: metadata, composer and structure

MODULE SKELETON: METADATA,
COMPOSER AND STRUCTURE

In order to create a working OXID eShop module, you have to create a certain file structure

inside your module and use certain metadata files.

metadata.php

Helpers

Version 1.0

Version 1.1

Version 2.0

Compatibility between different metadata versions

composer.json

Dependencies and autoloading with composer

Install a module with composer

File and folder structure

Note

The file composer.json is only necessary if you want to use composer to install a module,

add dependencies or autoload PHP files.

Previous

© Copyright 2017 - 2018, OXID eSales AG.

OXID eShop developer documentation

2018-02-21 32

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/index.rst

Edit on GitHub

Next

Docs » Module resources » Module skeleton: metadata, composer and structure »
metadata.php

METADATA.PHP

Since OXID eShop version 4.9.0 / 5.2.0 (Release notes) each module has to have metadata

set. This has to be done with a file metadata.php in the module directory.

Note

There is already a blog post about Module Metadata but this blog post is partly outdated

with release of OXID eShop 6.0.

Helpers

Version 1.0

Version 1.1

Version 2.0

Compatibility between different metadata versions

Previous

© Copyright 2017 - 2018, OXID eSales AG.

OXID eShop developer documentation

2018-02-21 33

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/metadataphp/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/metadataphp/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/metadataphp/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/metadataphp/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/metadataphp/index.rst
https://docs.oxid-esales.com/eshop/de/5.3/releases/releases-2014/oxid-eshop-490520.html
https://docs.oxid-esales.com/eshop/de/5.3/releases/releases-2014/oxid-eshop-490520.html
https://docs.oxid-esales.com/eshop/de/5.3/releases/releases-2014/oxid-eshop-490520.html
https://oxidforge.org/en/extension-metadata-file.html
https://oxidforge.org/en/extension-metadata-file.html
https://oxidforge.org/en/extension-metadata-file.html

Edit on GitHub

Next

Docs » Module resources » Module skeleton: metadata, composer and structure »

metadata.php » Helpers

HELPERS

Here are some links to little helpers/tools for developers of modules for the OXID eShop:

OXID module internals

Metadata Generator

Previous

© Copyright 2017 - 2018, OXID eSales AG.

OXID eShop developer documentation

2018-02-21 34

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/metadataphp/helpers.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/metadataphp/helpers.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/metadataphp/helpers.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/metadataphp/helpers.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/metadataphp/helpers.rst
https://github.com/acirtautas/oxid-module-internals
https://github.com/acirtautas/oxid-module-internals
https://github.com/acirtautas/oxid-module-internals
https://github.com/acirtautas/oxid-module-internals
https://github.com/acirtautas/oxid-module-internals
https://github.com/OXIDprojects/metadataGenerator
https://github.com/OXIDprojects/metadataGenerator
https://github.com/OXIDprojects/metadataGenerator

Edit on GitHub

Next

Docs » Module resources » Module skeleton: metadata, composer and structure »

metadata.php » Version 1.0

VERSION 1.0

The same like version 1.1 but without module events.

Previous

© Copyright 2017 - 2018, OXID eSales AG.

OXID eShop developer documentation

2018-02-21 35

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/metadataphp/version10.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/metadataphp/version10.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/metadataphp/version10.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/metadataphp/version10.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/metadataphp/version10.rst

Edit on GitHub

Docs » Module resources » Module skeleton: metadata, composer and structure »

metadata.php » Version 1.1

VERSION 1.1

CHANGES COMPARED TO VERSION 1.0

Module events

ID

The extension id must be unique. It is recommended to use vendor prefix + module root

directory name. Module ID is used for getting all needed information about extension. If
this module has defined config variables in oxconfig and oxconfigdisplay tables (e.g.

module:efifactfinder), the extension id used in these tables should match extension id
defined in metadata file. Also same id (efifactfinder) must be used when defining

extension templates blocks in oxtplblocks table.

Note

The extension id for modules written for OXID eShop versions >= 4.7.0 mustn’t be > 25

characters. The extension id for modules written for OXID eShop versions >= 4.9.0 mustn’t

be > 93 characters. Please also see https://bugs.oxid-esales.com/view.php?id=5549.

TITLE

Used to display extension title in the extensions list and detail information.

DESCRIPTION

Used to display extension description in the extension detail information page. This field is
multilang capable

OXID eShop developer documentation

2018-02-21 36

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/metadataphp/version11.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/metadataphp/version11.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/metadataphp/version11.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/metadataphp/version11.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/metadataphp/version11.rst
https://bugs.oxid-esales.com/view.php?id=5549

LANG

Default extension language. Displaying extension title or description there will be checked

if these fields have a selected language. If not, the selected language defined in the lang

field will be selected. E.g. if admin is opened in German and extension is available in
English, the English title and description value will be shown as there is translation into

German.

THUMBNAIL

Extension thumbnail filename. Thumbnail should be in root folder and it is displayed in
admin under extension details page.

VERSION

The version number of this extension.

AUTHOR

The author/developer of this extension.

URL

Link to module writer web page.

EMAIL

Module vendor email.

EXTEND

On this place shall be defined which shop classes are extended by this module. Here is an

example:

'extend' => array(
 'order' => 'oe/oepaypal/controllers/oepaypalorder',
 'payment' => 'oe/oepaypal/controllers/oepaypalpayment',
 'wrapping' => 'oe/oepaypal/controllers/oepaypalwrapping',
 'oxviewconfig' => 'oe/oepaypal/controllers/oepaypaloxviewconfig',
 'oxaddress' => 'oe/oepaypal/models/oepaypaloxaddress',
 'oxuser' => 'oe/oepaypal/models/oepaypaloxuser',
 'oxorder' => 'oe/oepaypal/models/oepaypaloxorder',
 'oxbasket' => 'oe/oepaypal/models/oepaypaloxbasket',
 'oxbasketitem' => 'oe/oepaypal/models/oepaypaloxbasketitem',
 'oxarticle' => 'oe/oepaypal/models/oepaypaloxarticle',
 'oxcountry' => 'oe/oepaypal/models/oepaypaloxcountry',

2018-02-21 37

This information is used for activating/deactivating extension. Take care you declare the

keys (e.g. oxorder) always in lower case! Take care you declare the file names case

sensitive! It is suggested to use lower case for file names, to avoid difficulties.

FILES

All module php files that do not extend any shop class. On request shop autoloader

checks this array and if class name is registered in this array, loads class. So now no need

to copy module classes to shop core or view folder and all module files can be in module

folder.

BLOCKS

In this array are registered all module templates blocks. On module activation they are

automaticly inserted into database. On activating/deactivating module, all module blocks

also are activated/deactivated

 'oxstate' => 'oe/oepaypal/models/oepaypaloxstate',
),

'files' => array(
 'oePayPalException' =>
'oe/oepaypal/core/exception/oepaypalexception.php',
 'oePayPalCheckoutService' => 'oe/oepaypal/core/oepaypalcheckoutservice.php',
 'oePayPalLogger' => 'oe/oepaypal/core/oepaypallogger.php',
 'oePayPalPortlet' => 'oe/oepaypal/core/oepaypalportlet.php',
 'oePayPalDispatcher' =>
'oe/oepaypal/controllers/oepaypaldispatcher.php',
 'oePayPalExpressCheckoutDispatcher' =>
'oe/oepaypal/controllers/oepaypalexpresscheckoutdispatcher.php',
 'oePayPalStandardDispatcher' =>
'oe/oepaypal/controllers/oepaypalstandarddispatcher.php',
 'oePaypal_EblLogger' => 'oe/oepaypal/core/oeebl/oepaypal_ebllogger.php',
 'oePaypal_EblPortlet' =>
'oe/oepaypal/core/oeebl/oepaypal_eblportlet.php',
 'oePaypal_EblSoapClient' =>
'oe/oepaypal/core/oeebl/oepaypal_eblsoapclient.php',
 'oepaypalevents' => 'oe/oepaypal/core/oepaypalevents.php',
),

'blocks' => array(
 array(
 'template' => 'widget/sidebar/partners.tpl',
 'block'=>'partner_logos',
 'file'=>'/views/blocks/oepaypalpartnerbox.tpl'
 'position' => '2'
),
 array(
 'template' => 'page/checkout/basket.tpl',
 'block'=>'basket_btn_next_top',

2018-02-21 38

Differences in block file definition per shop/metadata version.

In OXID eShop >= 4.6 with metadata version 1.0 template block file value was relative to
out/blocks directory inside module root.

In OXID eShop 4.7 / 5.0 with metadata version 1.1 template block file value has to be

specified directly from module root.

To maintain compatibility with older shop versions, template block files will work using

both notations.

Template block file value holding path to your customized block should be defined

using full path from module directory, earlier it was a sub path from modules out/blocks

directory.

You can define a position of a block if a template block is extended multiple (by different

modules). So you can sort the block extensions. This is done via the optional template

block position value.

SETTINGS

There are registered all module configuration options. On activation they are inserted in
config table and then in backend you can configure module according these options. Lets

have a look at the code to become a clearer view.

 'file'=>'/views/blocks/oepaypalexpresscheckout.tpl'
 'position' => '1'
),
 array(
 'template' => 'page/checkout/basket.tpl',
 'block'=>'basket_btn_next_bottom',
 'file'=>'/views/blocks/oepaypalexpresscheckout.tpl'
),
),
)

'settings' => array(
 array('group' => 'main', 'name' => 'dMaxPayPalDeliveryAmount', 'type' => 'str',
'value' => '30'),
 array('group' => 'main', 'name' => 'blPayPalLoggerEnabled', 'type' => 'bool',
'value' => 'false'),
 array('group' => 'main', 'name' => 'aAlwaysOpenCats', 'type' => 'arr',
'value' => array('Preis','Hersteller')),
 array('group' => 'main', 'name' => 'aFactfinderChannels', 'type' => 'aarr',
'value' => array('1' => 'de', '2' => 'en')),
 array('group' => 'main', 'name' => 'sConfigTest', 'type' => 'select',
'value' => '0', 'constraints' => '0|1|2|3', 'position' => 3),
 array('group' => 'main', 'name' => 'sPassword', 'type' => 'password',

2018-02-21 39

Each setting belongs to a group. In this case its called main . Then follows the name of the

setting which is the variable name in oxconfig/oxconfigdisplay table. It is best practice to
prefix it with your moduleid to avoid name collisions with other modules. Next part is the

type of the parameter and last part is the default value.

In order to get correct translations of your settings names in admin one should create

views/admin/module_options.php` where is the language with 2 letters for example en

for english. There should be placed the language constants according to the following

scheme:

So the shop looks in the file for a language constant like SHOP_MODULE_GROUP_ and for the

single setting for a language constant like SHOP_MODULE_ . In php classes you can query your

module settings by using the function getParameter() of oxConfig class:

or since OXID 4.7 you can also use

TEMPLATES

Module templates array. All module templates should be registered here, so on requiring

template shop will search template path in this array.

‘templates’ => array(‘order_dhl.tpl’ => ‘oe/efi_dhl/out/admin/tpl/order_dhl.tpl’)

'value' => 'changeMe')
)

/* Entries in lang.php for constraints example:
'SHOP_MODULE_sConfigTest' => 'Field Label',
'SHOP_MODULE_sConfigTest_0' => '',
'SHOP_MODULE_sConfigTest_1' => 'Value x',
'SHOP_MODULE_sConfigTest_2' => 'Value y',
'SHOP_MODULE_sConfigTest_3' => 'Value z'
*/

// Entries in module_options.php for above code examples first entry:
'SHOP_MODULE_GROUP_main' => 'Paypal settings',
'SHOP_MODULE_dMaxPayPalDeliveryAmount' => 'Maximal delivery amount',
'HELP_SHOP_MODULE_dMaxPayPalDeliveryAmount' => 'A help text for this setting',

$myconfig = $this->getConfig();
$myconfig->getConfigParam("dMaxPayPalDeliveryAmount");

$myconfig = oxRegistry::get("oxConfig");
$myconfig->getConfigParam("dMaxPayPalDeliveryAmount");

2018-02-21 40

EVENTS

Module events were introduced in metadata version 1.1. Currently there are only 2 of them

(onActivate and onDeactivate), more events will be added in future releases. Event handler

class shoul’d be registered in medatata files array.

CUSTOM JAVASCRIPT / CSS / IMAGES

Create out/src/js/, out/src/img/ and out/src/css/ directories so it fit Shop structure and

would be easier to debug for other people. You can use something like this to include your

scripts in to templates:

METADATA FILE VERSION

Here is an example of PayPal module metadata file:

'events' => array(
 'onActivate' => 'oepaypalevents::onActivate',
 'onDeactivate' => 'oepaypalevents::onDeactivate'
),

[{oxscript include=$oViewConf->getModuleUrl("{moduleID}", "out/src/js/{js_fle_name}.js")}]

$sMetadataVersion = '1.1';

/**
 * Metadata version
 */
$sMetadataVersion = '1.1';

/**
 * Module information
 */
$aModule = array(
 'id' => 'oepaypal',
 'title' => 'PayPal',
 'description' => array(
 'de' => 'Modul fuer die Zahlung mit PayPal. Erfordert einen OXID eFire Account und die
abgeschlossene Aktivierung des Portlets "PayPal".',
 'en' => 'Module for PayPal payment. An OXID eFire account is required as well as the
finalized activation of the portlet "PayPal".',
),
 'thumbnail' => 'logo.jpg',
 'version' => '2.0.3',
 'author' => 'OXID eSales AG',
 'url' => 'http://www.oxid-esales.com',

2018-02-21 41

MULTILANGUAGE FIELDS

Note

 'email' => 'info@oxid-esales.com',
 'extend' => array(
 'order' => 'oe/oepaypal/controllers/oepaypalorder',
 'payment' => 'oe/oepaypal/controllers/oepaypalpayment',
 'wrapping' => 'oe/oepaypal/controllers/oepaypalwrapping',
 'oxviewconfig' => 'oe/oepaypal/controllers/oepaypaloxviewconfig',
 'oxaddress' => 'oe/oepaypal/models/oepaypaloxaddress',
 'oxuser' => 'oe/oepaypal/models/oepaypaloxuser',
 'oxorder' => 'oe/oepaypal/models/oepaypaloxorder',
 'oxbasket' => 'oe/oepaypal/models/oepaypaloxbasket',
 'oxbasketitem' => 'oe/oepaypal/models/oepaypaloxbasketitem',
 'oxarticle' => 'oe/oepaypal/models/oepaypaloxarticle',
 'oxcountry' => 'oe/oepaypal/models/oepaypaloxcountry',
 'oxstate' => 'oe/oepaypal/models/oepaypaloxstate',
),
 'files' => array(
 'oePayPalException' =>
'oe/oepaypal/core/exception/oepaypalexception.php',
 'oePayPalCheckoutService' => 'oe/oepaypal/core/oepaypalcheckoutservice.php',
 'oePayPalLogger' => 'oe/oepaypal/core/oepaypallogger.php',
 'oePayPalPortlet' => 'oe/oepaypal/core/oepaypalportlet.php',
 'oePayPalDispatcher' =>
'oe/oepaypal/controllers/oepaypaldispatcher.php',
 'oePayPalExpressCheckoutDispatcher' =>
'oe/oepaypal/controllers/oepaypalexpresscheckoutdispatcher.php',
 'oePayPalStandardDispatcher' =>
'oe/oepaypal/controllers/oepaypalstandarddispatcher.php',
 'oePaypal_EblLogger' => 'oe/oepaypal/core/oeebl/oepaypal_ebllogger.php',
 'oePaypal_EblPortlet' =>
'oe/oepaypal/core/oeebl/oepaypal_eblportlet.php',
 'oePaypal_EblSoapClient' =>
'oe/oepaypal/core/oeebl/oepaypal_eblsoapclient.php',
 'oepaypalevents' => 'oe/oepaypal/core/oepaypalevents.php',
),
 'events' => array(
 'onActivate' => 'oepaypalevents::onActivate',
 'onDeactivate' => 'oepaypalevents::onDeactivate'
),
 'blocks' => array(
 array('template' => 'widget/sidebar/partners.tpl', 'block'=>'partner_logos',
'file'=>'/views/blocks/oepaypalpartnerbox.tpl'),
 array('template' => 'page/checkout/basket.tpl', 'block'=>'basket_btn_next_top',
'file'=>'/views/blocks/oepaypalexpresscheckout.tpl'),
 array('template' => 'page/checkout/basket.tpl', 'block'=>'basket_btn_next_bottom',
'file'=>'/views/blocks/oepaypalexpresscheckout.tpl'),
 array('template' => 'page/checkout/payment.tpl', 'block'=>'select_payment',
'file'=>'/views/blocks/oepaypalpaymentselector.tpl'),
),
 'settings' => array(
 array('group' => 'main', 'name' => 'dMaxPayPalDeliveryAmount', 'type' => 'str',
'value' => '30'),
 array('group' => 'main', 'name' => 'blPayPalLoggerEnabled', 'type' => 'bool',
'value' => 'false'),
)
);

2018-02-21 42

This section is about multilanguage fields of strings introduced in the metadata.php file
itself. If you want to use translations in your module for frontend or backend, you should

place them in your module according the module structure conventions

Extension description is a multilanguage field. This should be an array with a defined key

as language abbervation and the value of it’s translation.

The field value also can be a simple string. If this field value is not an array but simple text,

this text string will be displayed in all languages.

VENDOR DIRECTORY SUPPORT

All modules can be placed not directly in shop modules directory, but also in vendor

directory. In this case the vendormetadata.php file must be placed in the vendor directory

root. If the modules handler finds this file on scanning the shop modules directory, it
knows that this is vendor directory and all subdirectories in this directory should be

scanned also. Currently the vendormetadata.php file can be empty, in future here will be

added some additional information about the module vendor. Vendor directory structure

example:

In case of using a vendor directory you still need to describe file paths relatively to the

modules directory:

'description' => array(
 'de'=>'Intelligente Produktsuche und Navigation.',
 'en'=>'Intelligent product search and navigation.',
)

modules
 oxid
 module1
 module1 files
 module2
 module2 files
 module3
 module3 files

'extend' => array(
 'some_class' => 'oxid/module1/my_class'
),
'templates' => array(
 'my_template.tpl' => 'oxid/module1/my_template.tpl'
)

2018-02-21 43

NextPrevious

© Copyright 2017 - 2018, OXID eSales AG.

2018-02-21 44

Edit on GitHub

Docs » Module resources » Module skeleton: metadata, composer and structure »

metadata.php » Version 2.0

VERSION 2.0

CHANGES COMPARED TO VERSION 1.1

New Section Controllers: To be able to use namespaces for module controllers, we

introduce module’s metadata.php version 2.0 with a new section controllers . The support for

files was dropped in Module’s metadata version 2.0. Classes in a namespace will be found

by the autoloader. If you use your own namespace, register it in the module’s composer.json

file.

Important

You can use metadata version 2.0 with controllers only for modules using namespaces.

When using modules without a namespace you will have to use metadata version 1.0 with

the ‘files’ section to register your module controllers.

Templates and blocks for different Shop themes. It also allows to define templates and

blocks for all themes (define in the same way as in old metadata).

ID

The extension id must be unique. It is recommended to use vendor prefix + module root

directory name. Module ID is used for getting all needed information about extension. If
this module has defined config variables in oxconfig and oxconfigdisplay tables (e.g.

module:efifactfinder), the extension id used in these tables should match extension id
defined in metadata file. Also same id (efifactfinder) must be used when defining

extension templates blocks in oxtplblocks table.

Note

OXID eShop developer documentation

2018-02-21 45

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/metadataphp/version20.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/metadataphp/version20.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/metadataphp/version20.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/metadataphp/version20.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/metadataphp/version20.rst

the extension id for modules written for OXID eShop versions >= 4.9.0 mustn’t be > 93

characters. Please also see https://bugs.oxid-esales.com/view.php?id=5549.

TITLE

Used to display extension title in the extensions list and detail information.

DESCRIPTION

Used to display extension description in the extension detail information page. This field is
multilang capable

LANG

Default extension language. Displaying extension title or description there will be checked

if these fields have a selected language. If not, the selected language defined in the lang

field will be selected. E.g. if admin is opened in German and extension is available in
English, the English title and description value will be shown as there is translation into

German.

THUMBNAIL

Extension thumbnail filename. Thumbnail should be in root folder and it is displayed in
admin under extension details page.

VERSION

The version number of this extension.

AUTHOR

The author/developer of this extension.

URL

Link to module writer web page.

EMAIL

Module vendor email.

EXTEND

2018-02-21 46

https://bugs.oxid-esales.com/view.php?id=5549

On this place shall be defined which shop classes are extended by this module. You can

use metadata version 2.0 with controllers only for modules using namespaces.

You should extend only OXID eShop classes within the Unified Namespace

(\OxidEsales\Eshop). If you try to extend e.g a class of the namespace

\OxidEsales\EshopCommunity , you are not able to activate the module and get a warning

message in the OXID eShop admin.

CONTROLLERS

At this place, you can define, which controllers should be able to be called directly, e.g.

from templates. You can define a routing of controller keys to module classes.

The key of this array

is a identifier (controller key) which should be unique over all OXID eShop modules. Use

vendor id and module id for prefixing.

Take care you declare the keys always in lower case!

The value is the assigned class which should also be unique.

Now you can route requests to the module controller e.g. in a template:

'extend' => array(
 \OxidEsales\Eshop\Application\Model\Payment::class =>
MyVendor\MyModuleNamespace\Application\Model\MyModulePayment::class,
 \OxidEsales\Eshop\Application\Model\Article::class =>
MyVendor\MyModuleNamespace\Application\Model\MyModuleArticle::class
),

'controllers' => [
 'myvendor_mytestmodule_mymodulecontroller' =>
MyVendor\mytestmodule\MyModuleController::class,
 'myvendor_mytestmodule_myothermodulecontroller' =>
MyVendor\mytestmodule\MyOtherModuleController::class,
],

<form action="[{$oViewConf->getSelfActionLink()}]" name="MyModuleControllerAction"
method="post" role="form">
 <div>
 [{$oViewConf->getHiddenSid()}]
 <input type="hidden" name="cl" value="myvendor_mytestmodule_mymodulecontroller">
 <input type="hidden" name="fnc" value="displayMessage">
 <input type="text" size="10" maxlength="200" name="mymodule_message"
value="[{$the_module_message}]">

2018-02-21 47

https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html#modules-unified-namespaces-20170526
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html#modules-unified-namespaces-20170526
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html#modules-unified-namespaces-20170526

If the controller key is not found within the shop or modules, it is assumed that the

controller key is a class with this name. If there is no class with this name present, the

OXID eShop will redirect to the shop front page.

BLOCKS

In this array are registered all module templates blocks. On module activation they are

automaticly inserted into database. On activating/deactivating module, all module blocks

also are activated/deactivated.

The template block file value has to be specified directly from module root. You can

define a position of a block if a template block is extended multiple (by different modules).

So you can sort the block extensions. This is done via the optional template block

position value.

To describe block or overwrite default block template for specific theme, use theme

attribute in block description.

 <button type="submit" id="MyModuleControllerActionButton"
class="submitButton">[{oxmultilang ident="SUBMIT"}]</button>
 </div>
</form>

'blocks' => array(
 array(
 'template' => 'widget/sidebar/partners.tpl',
 'block'=>'partner_logos',
 'file'=>'/views/blocks/oepaypalpartnerbox.tpl'
 'position' => '2'
),
 array(
 'template' => 'page/checkout/basket.tpl',
 'block'=>'basket_btn_next_top',
 'file'=>'/views/blocks/oepaypalexpresscheckout.tpl'
 'position' => '1'
),
 array(
 'template' => 'page/checkout/basket.tpl',
 'block'=>'basket_btn_next_bottom',
 'file'=>'/views/blocks/oepaypalexpresscheckout.tpl'
),
),
)

'blocks' => array(
 array(
 'theme' => 'shop_theme_id'
 'template' => 'name_off_shop_template_which_contains_block',
 'block'=>'name_off_shop_block',

2018-02-21 48

Note

To override default block use same template and block values.

Specific block will override all files for specific block.

It is not allowed to use admin as a theme id.

Example

In this particular example:

If flow_theme theme is active, the contents of oepaypalpartnerboxForFlow.tpl file would

be loaded in partners.tpl partner_logos block.

For other then flow_theme theme, the oepaypalpartnerbox1.tpl and

oepaypalpartnerbox2.tpl files contents would be shown in partners.tpl partner_logos

block.

CUSTOM BLOCKS

It is possible to reuse template blocks for parent theme when child theme extends parent

theme.

 'file'=>'path_to_module_block_file'
),

'blocks' => array(
 array(
 'template' => 'deliveryset_main.tpl',
 'block'=>'admin_deliveryset_main_form',
 'file'=>'/views/blocks/deliveryset_main.tpl',
),
 array(
 'template' => 'widget/sidebar/partners.tpl',
 'block'=>'partner_logos',
 'file'=>'/views/blocks/widget/sidebar/oepaypalpartnerbox1.tpl',
),
 array(
 'template' => 'widget/sidebar/partners.tpl',
 'block'=>'partner_logos',
 'file'=>'/views/blocks/widget/sidebar/oepaypalpartnerbox2.tpl',
),
 array(
 'theme' => 'flow_theme',
 'template' => 'widget/sidebar/partners.tpl',
 'block'=>'partner_logos',
 'file'=>'/views/blocks/widget/sidebar/oepaypalpartnerboxForFlow.tpl',
),
)

'blocks' => array(

2018-02-21 49

In this particular example flow_theme_child extends flow_theme. If flow_theme_child

theme would be active:

oepaypalpartnerboxForMyCustomFlow.tpl template block would be used instead of

partner_logos.

oepaypalexpresscheckoutminibasketFlow.tpl template would be used instead of

widget_minibasket_total.

SETTINGS

There are registered all module configuration options. On activation they are inserted in
config table and then in backend you can configure module according these options. Lets

have a look at the code to become a clearer view.

 array(
 'template' => 'widget/minibasket/minibasket.tpl',
 'block'=>'widget_minibasket_total',
 'file'=> '/views/blocks/widget/minibasket/oepaypalexpresscheckoutminibasket.tpl',
),
 array(
 'template' => 'widget/sidebar/partners.tpl',
 'block'=> 'partner_logos',
 'file'=>'/views/blocks/widget/sidebar/oepaypalpartnerbox.tpl',
),
 array(
 'theme' => 'flow_theme',
 'template' => 'widget/minibasket/minibasket.tpl',
 'block'=> 'widget_minibasket_total',
 'file'=> '/views/blocks/widget/minibasket/oepaypalexpresscheckoutminibasketFlow.tpl',
),
 array(
 'theme' => 'flow_theme',
 'template' => 'widget/sidebar/partners.tpl',
 'block'=> 'partner_logos',
 'file'=> '/views/blocks/widget/sidebar/oepaypalpartnerboxForFlow.tpl',
),
 array(
 'theme' => 'flow_theme_child',
 'template' => 'widget/sidebar/partners.tpl',
 'block'=> 'partner_logos',
 'file'=> '/views/blocks/widget/sidebar/oepaypalpartnerboxForMyCustomFlow.tpl',
),
)

'settings' => array(
 array('group' => 'main', 'name' => 'dMaxPayPalDeliveryAmount', 'type' => 'str',
'value' => '30'),
 array('group' => 'main', 'name' => 'blPayPalLoggerEnabled', 'type' => 'bool',
'value' => 'false'),
 array('group' => 'main', 'name' => 'aAlwaysOpenCats', 'type' => 'arr',
'value' => array('Preis','Hersteller')),
 array('group' => 'main', 'name' => 'aFactfinderChannels', 'type' => 'aarr',

2018-02-21 50

Each setting belongs to a group. In this case its called main . Then follows the name of the

setting which is the variable name in oxconfig/oxconfigdisplay table. It is best practice to
prefix it with your moduleid to avoid name collisions with other modules. Next part is the

type of the parameter and last part is the default value.

In order to get correct translations of your settings names in admin one should create

views/admin/module_options.php where is the language with 2 letters for example en for

english. There should be placed the language constants according to the following

scheme:

So the shop looks in the file for a language constant like SHOP_MODULE_GROUP_ and for the

single setting for a language constant like SHOP_MODULE_ . In php classes you can query your

module settings by using the function getConfigParam() of Config class:

TEMPLATES

All module templates should be registered here, so on requiring template shop will search

template path in this array. Default template (for all themes) are described in same way as

in metadata v1.*

To have template for specific theme, define it in an array with the key equal to theme id.

'value' => array('1' => 'de', '2' => 'en')),
 array('group' => 'main', 'name' => 'sConfigTest', 'type' => 'select',
'value' => '0', 'constraints' => '0|1|2|3', 'position' => 3),
 array('group' => 'main', 'name' => 'sPassword', 'type' => 'password',
'value' => 'changeMe')
)

// Entries in module_options.php for above code examples first entry:
'SHOP_MODULE_GROUP_main' => 'Paypal settings',
'SHOP_MODULE_dMaxPayPalDeliveryAmount' => 'Maximal delivery amount',
'HELP_SHOP_MODULE_dMaxPayPalDeliveryAmount' => 'A help text for this setting',

$myconfig = Registry::getConfig();
$myconfig->getConfigParam("dMaxPayPalDeliveryAmount");

'templates' => array(
 'module_template_name' => 'path_to_module_template',
)

'templates' => array(
 'theme_id' => array(

2018-02-21 51

Note

Its possible to use any theme id, even default one, if you want to specify some template for

the theme.

It is not allowed to use admin as a theme id.

Example

TEMPLATES FOR CHILD THEME

It is possible to reuse templates for parent theme when child theme extends parent theme.

This mechanism is especially useful in project scope when needs to customize an already

existing theme.

In this particular example flow_theme_child extends flow_theme. If flow_theme_child

theme would be active:

moreMyCustomFlow.tpl template would be used instead of more.tpl.

ipnhandlerFlow.tpl template would be used instead of ipnhandler.tpl.

 'module_template_name' => 'path_to_module_template',
)
)

'templates' => array(
 'order_paypal.tpl' => 'oe/oepaypal/views/admin/tpl/order_paypal.tpl',
 'ipnhandler.tpl' => 'oe/oepaypal/views/tpl/ipnhandler.tpl',
 'more.tpl' => 'oe/oepaypal/views/tpl/moreDefault.tpl',

 'flow_theme' => array(
 'more.tpl' => 'oe/oepaypal/views/tpl/moreFlow.tpl',
)
)

'templates' => array(
 'order_paypal.tpl' => 'oe/oepaypal/views/admin/tpl/order_paypal.tpl',
 'ipnhandler.tpl' => 'oe/oepaypal/views/tpl/ipnhandler.tpl',
 'more.tpl' => 'oe/oepaypal/views/tpl/moreDefault.tpl',

 'flow_theme' => array(
 'ipnhandler.tpl' => 'oe/oepaypal/views/tpl/ipnhandlerFlow.tpl',
 'more.tpl' => 'oe/oepaypal/views/tpl/moreFlow.tpl',
),

 'flow_theme_child' => array(
 'more.tpl' => 'oe/oepaypal/views/tpl/moreMyCustomFlow.tpl',
)
)

2018-02-21 52

EVENTS

Module events were introduced in metadata version 1.1. There are 2 events: onActivate

and onDeactivate.

METADATA FILE VERSION

MULTILANGUAGE FIELDS

Note

This section is about multilanguage fields of strings introduced in the metadata.php file
itself. If you want to use translations in your module for frontend or backend, you should

place them in your module according the module structure conventions.

Extension description is a multilanguage field. This should be an array with a defined key

as language abbervation and the value of it’s translation.

The field value also can be a simple string. If this field value is not an array but simple text,

this text string will be displayed in all languages.

VENDOR DIRECTORY SUPPORT

All modules can be placed not directly in shop modules directory, but also in vendor

directory. Vendor directory structure example:

'events' => array(
 'onActivate' => '\OxidEsales\PayPalModule\Core\Events::onActivate',
 'onDeactivate' => '\OxidEsales\PayPalModule\Core\Events::onDeactivate'
),

$sMetadataVersion = '2.0';

'description' => array(
 'de'=>'Intelligente Produktsuche und Navigation.',
 'en'=>'Intelligent product search and navigation.',
)

modules
 oxid
 module1
 module1 files
 module2

2018-02-21 53

Next

EXAMPLE OF METADATA.PHP

Here is an example of a module metadata file:

Previous

© Copyright 2017 - 2018, OXID eSales AG.

 module2 files
 module3
 module3 files

Example for module using namespaces

<?php
/**
 * Metadata version
 */
$sMetadataVersion = '2.0';
/**
 * Module information
 */
$aModule = array(
 'id' => 'myvendor_mytestmodule',
 'title' => 'Test metadata controllers feature',
 'description' => '',
 'thumbnail' => 'picture.png',
 'version' => '2.0',
 'author' => 'OXID eSales AG',
 'controllers' => [
 'myvendor_mytestmodule_MyModuleController' =>
MyVendor\mytestmodule\MyModuleController::class,
 'myvendor_mytestmodule_MyOtherModuleController' =>
MyVendor\mytestmodule\MyOtherModuleController::class,
],
 'templates' => [
 'mytestmodule.tpl' => 'mytestmodule/mytestmodule.tpl',
 'mytestmodule_other.tpl' => 'mytestmodule/test_module_controller_routing_other.tpl'
]
);

2018-02-21 54

Edit on GitHub

Next

Docs » Module resources » Module skeleton: metadata, composer and structure »

metadata.php » Compatibility between different metadata versions

COMPATIBILITY BETWEEN DIFFERENT
METADATA VERSIONS

This table shows, which versions of versions of OXID eShop are compatible with which

version of metadata.php. The metadata version is not checked before OXID eShop version

6. Only features of the metadata versions are checked: e.g. the feature events is checked

in OXID eShop > 4.9.

Previous

© Copyright 2017 - 2018, OXID eSales AG.

OXID eShop version Metadata version

< 4.6 no metadata.php, 1.0, 1.1 with reduced feature set of 1.0

>= 4.6 and < 4.9/5.2 no metadata.php, 1.0, 1.1 with reduced feature set of 1.0

>= 4.9/5.2 and < 6.0 1.0, 1.1

>= 6 1.0, 1.1, 2.0

OXID eShop developer documentation

2018-02-21 55

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/metadataphp/version_compatibility.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/metadataphp/version_compatibility.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/metadataphp/version_compatibility.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/metadataphp/version_compatibility.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/metadataphp/version_compatibility.rst

Edit on GitHub

Next

Docs » Module resources » Module skeleton: metadata, composer and structure »
composer.json

COMPOSER.JSON

The file composer.json is necessary to install a module via composer, add dependencies

and autoload PHP files.

Dependencies and autoloading with composer

Install a module with composer

Previous

© Copyright 2017 - 2018, OXID eSales AG.

OXID eShop developer documentation

2018-02-21 56

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/composerjson/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/composerjson/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/composerjson/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/composerjson/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/composerjson/index.rst

Edit on GitHub

Docs » Module resources » Module skeleton: metadata, composer and structure »

composer.json » Dependencies and autoloading with composer

DEPENDENCIES AND AUTOLOADING
WITH COMPOSER

Glossary:

`<shop_directory>` - OXID eShop directory of the project.

`<vendor>` - Vendor name of the module.

`<module-vendor/module-name> ` - Name of the module which is registered in the composer file.

`<branch_name>` - Branch name which will be used to develop the module.

STEPS HOW TO ADD

These steps describes how to add module dependency to OXID eShop project.

Checkout module to the modules directory in the OXID eShop.

Add a link from module to the Shop composer file.

Install module through a composer.

cd <shop_directory>/source/modules/<vendor>
git clone <git_path_to_module_repository> <module_id>

cd <shop_directory>
composer config repositories.<module-vendor/module-name> path
<shop_directory>/source/modules/<vendor><module_id>

OXID eShop developer documentation

2018-02-21 57

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/composerjson/dependencies_and_autoloading.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/composerjson/dependencies_and_autoloading.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/composerjson/dependencies_and_autoloading.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/composerjson/dependencies_and_autoloading.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/composerjson/dependencies_and_autoloading.rst

Next

Note

Composer will silently take other branch or release if a requirement could not be solved

differently.

For example:
Module has a release without requirements.

Current code requires dependency in the module composer file.

System does not meet the requirement.

After composer install older module without requirements will be taken by composer.

Disable usage of Packagist to avoid this situation.

WHY IN THIS WAY

Adding module to the modules directory allows to change files of the module and see

changes on the fly.

Installing though the composer will:

Add all the dependencies of the module to the project.

Register module namespace so composer autoloader could be used to load objects.

NAMESPACE

Composer autoloader is used to load classes. In order to load module classes the module

needs to register it’s namespace to the modules path:

Note

Shop v6 still supports modules for Shop v5.3. Classes without namespaces might be

registered in the module metadata file. Read more in OXID Forge.

Previous

composer require <module-vendor/module-name>:*

"autoload": {
 "psr-4": {
 "<vendor>\\<module-name>\\": "../../../source/modules/<vendor>/<module-name>"
 }
},

2018-02-21 58

https://getcomposer.org/doc/05-repositories.md#disabling-packagist-org
https://getcomposer.org/doc/05-repositories.md#disabling-packagist-org
https://getcomposer.org/doc/05-repositories.md#disabling-packagist-org
https://getcomposer.org/doc/05-repositories.md#disabling-packagist-org
https://getcomposer.org/doc/05-repositories.md#disabling-packagist-org
https://getcomposer.org/doc/05-repositories.md#disabling-packagist-org
https://getcomposer.org/doc/05-repositories.md#disabling-packagist-org
https://oxidforge.org/en/extension-metadata-file.html
https://oxidforge.org/en/extension-metadata-file.html
https://oxidforge.org/en/extension-metadata-file.html
https://oxidforge.org/en/extension-metadata-file.html
https://oxidforge.org/en/extension-metadata-file.html
https://oxidforge.org/en/extension-metadata-file.html
https://oxidforge.org/en/extension-metadata-file.html
https://oxidforge.org/en/extension-metadata-file.html
https://oxidforge.org/en/extension-metadata-file.html

Edit on GitHub

Docs » Module resources » Module skeleton: metadata, composer and structure »

composer.json » Install a module with composer

INSTALL A MODULE WITH COMPOSER

OXID eShop modules are installed via Composer by using the OXID eShop Composer

Plugin.

In order to install a module correctly, this plugin requires four fields to be described in
module composer.json file:

name

type

extra

require

autoload

PayPal module example:

{
 "name": "oxid-esales/paypal-module",
 "description": "This is the PayPal module for the OXID eShop.",
 "type": "oxideshop-module",
 "keywords": ["oxid", "modules", "eShop"],
 "homepage": "https://www.oxid-esales.com/en/home.html",
 "license": [
 "GPL-3.0",
 "proprietary"
],
 "extra": {
 "oxideshop": {
 "blacklist-filter": [
 "documentation/**/*.*"
],
 "target-directory": "oe/oepaypal"
 }
 },

OXID eShop developer documentation

2018-02-21 59

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/composerjson/module_via_composer.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/composerjson/module_via_composer.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/composerjson/module_via_composer.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/composerjson/module_via_composer.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/composerjson/module_via_composer.rst
https://github.com/OXID-eSales/oxideshop_composer_plugin
https://github.com/OXID-eSales/oxideshop_composer_plugin
https://github.com/OXID-eSales/oxideshop_composer_plugin
https://github.com/OXID-eSales/oxideshop_composer_plugin
https://github.com/OXID-eSales/oxideshop_composer_plugin
https://github.com/OXID-eSales/oxideshop_composer_plugin

NAME

This is the name the OXID eShop module will be publicly known and installable. E.g. in our

example you could type

TYPE

Module must have oxideshop-module value defined as a type. This defines how the

repository should be treated by the installer.

EXTRA: {OXIDESHOP}

TARGET-DIRECTORY

target-directory value will be used to create a folder inside the Shop modules directory.

This folder will be used to place all files of the module.

Important

It is strongly recommended to set the target directory value to <vendor of the module> +
<module ID> , e.g. oe/oepaypal .

SOURCE-DIRECTORY

If source-directory is given, the value defines which directory will be used to define where

the files and directories will be picked from. When the parameter is not given, the root

directory of the module is used instead.

 "require": {
 "php": ">=5.6",
 "lib-curl": ">=7.26.0",
 "lib-openssl": ">=1.0.1",
 "ext-curl": "*",
 "ext-openssl": "*"
 },
 "autoload": {
 "psr-4": {
 "OxidEsales\\PayPalModule\\": "../../../source/modules/oe/oepaypal"
 }
 }
}

composer require oxid-esales/paypal-module

2018-02-21 60

Note

Usually this parameter should not be used if all files are placed in the module’s root

directory.

BLACKLIST-FILTER

If blacklist-filter is given, it will be used to filter out unwanted files and directories while

the copy from source-directory to target-directory takes place. The value of

blacklist-filter must be a list of strings where each item represents a glob filter entry and

is described as a relative path (relative to source-directory).

Below is a list of valid entries:

README.md - will filter one specific file README.md ;

*.pdf - will filter all PDF documents from the source root directory;

**/*.pdf - will filter all PDF documents from the source root directory and all of it’s child

directories;

example/path/**/* - will filter all files and directories from the directory example/path , including the

given directory itself.

Below is a list of non-valid entries:

/an/absolute/path/to/file - absolute paths are not allowed, only relative paths are accepted;

some/path/ - ambigious description of directory to filter, it’s not clear if only the files are

needed to be filtered or directories have to be included as well.

For the most up-to-date definition of what can be accepted as an argument, please follow

the tests which covers the behaviour.

REQUIRE

Here you must define all dependencies your module has. You must define:

a minimum PHP version. In the example PHP >=5.6 is required

the required system libraries and their versions, if applicable. In the example lib-curl

>=7.26.0 and lib-openssl >=1.0.1 are required

the required PHP extension and their versions, if applicable. In the example the PHP

extensions curl and openssl must be activated

the required composer components, if applicable. In the example the are no requirements

defined

2018-02-21 61

https://github.com/OXID-eSales/oxideshop_composer_plugin/blob/master/tests/Unit/Utilities/CopyFileManager/CopyGlobFilteredFileManagerTest.php

Next

AUTOLOAD

It is necessary to define a PSR-4 compatible auto loading mechanism. For an easier

development, we recommend to use ”../../../source/modules/vendorname/moduleid”. You

will find more detailed development related information here

Keep in mind, that the target-directory in the section extra: {oxideshop} has to fit the

autoload path you define here. In our PayPal example the PSR-4 autoload path points to a
path inside the OXID eShop source/modules directory. This path must match the path of

the target-directory as defined in the extra: {oxideshop} section, as the files will be copied

there.

Previous

© Copyright 2017 - 2018, OXID eSales AG.

2018-02-21 62

Edit on GitHub

Docs » Module resources » Module skeleton: metadata, composer and structure »
File and folder structure

FILE AND FOLDER STRUCTURE

MODULE STRUCTURE IN OXID ESHOP

All modules exist in the OXID eShop modules directory.

To separate modules it is:
Recommended to group them by unique vendor.

Required to give them unique id.

Required to store module files in a directory with a name equal to module_id.

So the final structure of a module should be:

MODULE STRUCTURE IN MODULE REPOSITORY

In the repository it is recommended to keep module files without vendor or module

directory. This allows to clone and use module directly in OXID eShop modules directory.

Possible structure of the module in the repository:

.
└── source
 └── modules
 └── <vendor>
 └── <module_id>
 ├── composer.json
 ├── Controller
 ├── metadata.php
 ├── Model
 ├── README.md
 ├── ...
 └── tests

OXID eShop developer documentation

2018-02-21 63

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/structure.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/structure.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/structure.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/structure.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/skeleton/structure.rst

MODULE TRANSFORMATION

OXID Composer Plugin could be used in order to to create vendor and module_id

directories

LANGUAGE FILES

Language files are not specified inside the metadata.php but searched by naming

conventions inside the module directory.

Example language file:

UTF-8 is the only possible charset for language files as the OXID eShop runs by default

with UTF-8 itself and does not convert charsets. If you use any other charset for your

language files, you have to use html codes for special characters.

FRONTEND

Translation files can be placed in the folders

Application/translations

application/translations

translations

inside your module directory. If you have a folder Application or application inside your

module, translation files are searched inside this directory. Otherwise, they are searched

.
├── composer.json
├── Controller
├── metadata.php
├── Model
├── README.md
├── ...
└── tests

<?php

 $sLangName = 'English';

 $aLang = array(
 'charset' => 'UTF-8',

 'VENDORMYMODULEIDLANGUAGEKEY' => 'my translation of VENDORMYMODULEIDLANGUAGEKEY',
);

2018-02-21 64

inside the folder translations . Inside these directory, you have to create a directory for the

specific language, e.g. de or en . Inside the language specific, directory, the filename has

to be _lang.php.

Example:

ADMIN

Translation files can be placed in

Application/views/admin/

Example:

For translations of module settings, have a look at the section settings of the metadata file.

Note

In order to use translation files in your module, you have to specify at least one class inside

the section extend in your metadata.php.

CUSTOM JAVASCRIPT / CSS / IMAGES

Create out/src/js/, out/src/img/ and out/src/css/ directories so it fit Shop structure and

.
└── source
 └── modules
 └── <vendor>
 └── <module_id>
 └── translations
 └── de
 └── myvendormymodule_de_lang.php
 └── en
 └── myvendormymodule_en_lang.php

.
└── source
 └── modules
 └── <vendor>
 └── <module_id>
 └── Application
 └── views
 └── admin
 └── de
 └── myvendormymodule_admin_de_lang.php
 └── en
 └── myvendormymodule_admin_en_lang.php

2018-02-21 65

Next

would be easier to debug for other people. You can use something like this to include your

scripts in to templates:

Previous

© Copyright 2017 - 2018, OXID eSales AG.

[{oxscript include=$oViewConf->getModuleUrl("{moduleID}", "out/src/js/{js_fle_name}.js")}]

2018-02-21 66

Edit on GitHubDocs » Module resources » Testing

TESTING

It is recommended to write tests by using OXID Testing Library.

OXID Testing Library helps to test single module by:

Adding helpers to write tests.

Adding communication with OXID eShop layer.

Ensuring that tests do not affect each other due to database usage.

Stabilizing Selenium tests.

Allows to test compilation intercompatibility:

OXID eShop allows several modules to work at the same time and they might

interact with each other. Testing Library allows to easily run tests for each module

to check intercompatibility.

MODULE TESTS STRUCTURE

Default Testing Library behavior is to run all tests which are defined in one of the test

classes:

AllTestsUnit

AllTestsSelenium

These classes define default directories to store tests for a module:

Unit

Integration

Acceptance

OXID eShop developer documentation

2018-02-21 67

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/testing.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/testing.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/testing.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/testing.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/testing.rst
https://github.com/OXID-eSales/testing_library/
https://github.com/OXID-eSales/testing_library/
https://github.com/OXID-eSales/testing_library/
https://github.com/OXID-eSales/testing_library/
https://github.com/OXID-eSales/testing_library/

Next

Possible structure of module tests:

Possible example in PayPal GitHub repository.

Testing library and it’s documentation in GitHub.

USERS PREDEFINED IN DEMO DATA

If you are running tests or using reset-shop functionality of testing library, it’s possible to
use these credentials in OXID eShop:

Previous

© Copyright 2017 - 2018, OXID eSales AG.

<module_id>/tests/Acceptance/testData/fileNeededToBeCopiedToShop
<module_id>/tests/Acceptance/testSql/demodata.sql
<module_id>/tests/Acceptance/testSql/demodata_PE_CE.sql
<module_id>/tests/Acceptance/testSql/demodata_EE.sql
<module_id>/tests/Acceptance/testSql/demodata_EE_mall.sql
<module_id>/tests/Acceptance/moduleAcceptanceTest.php
<module_id>/tests/Integration/moduleIntegrationTest.php
<module_id>/tests/Unit/moduleUnitTest.php
<module_id>/tests/additional.inc.php
<module_id>/tests/phpunit.xml

Rights: admin
User name: admin
Password: admin

Rights: buyer
User name: user@oxid-esales.com
Password: user

2018-02-21 68

https://github.com/OXID-eSales/paypal/tree/a4770a7da0d1b13dc4e8be4f8bc30abf7d418d03/tests
https://github.com/OXID-eSales/paypal/tree/a4770a7da0d1b13dc4e8be4f8bc30abf7d418d03/tests
https://github.com/OXID-eSales/paypal/tree/a4770a7da0d1b13dc4e8be4f8bc30abf7d418d03/tests
https://github.com/OXID-eSales/paypal/tree/a4770a7da0d1b13dc4e8be4f8bc30abf7d418d03/tests
https://github.com/OXID-eSales/paypal/tree/a4770a7da0d1b13dc4e8be4f8bc30abf7d418d03/tests
https://github.com/OXID-eSales/testing_library/
https://github.com/OXID-eSales/testing_library/
https://github.com/OXID-eSales/testing_library/

Edit on GitHubDocs » Module resources » Interacting with the database

INTERACTING WITH THE DATABASE

ACTIVE RECORDS AND MAGIC GETTERS

Oxid uses active record to work with database. The OXID eShop architecture is based on

MVC patterns. To implement models, active record pattern is used. So in general, each

model class is linked with a database table. For example, the Article model is linked with

the oxarticles table, Order with the oxorders table etc. All models are stored in the

directory Application/Models. Let’s take one of them, for example the Article model, and

try to fetch the product (with the ID demoId) data from database:

Magic getters are used to get models attributes; they are constructed in this approach:

To set data to a model and store it, database magic setters (with the same approach as

magic getters) are used:

$product = oxNew(\OxidEsales\Eshop\Application\Model\Article::class); // creating model's
object
$product->load('demoId'); // loading data
//getting some informations
echo $product->oxarticles__oxtitle->value;
echo $product->oxarticles__oxshortdesc->value;

$model->tablename__columnname->value;
'tablename' is the name of the database table where the model data is stored
'columnname' is the name of the column of this table containing the data you want to fetch

$product = oxNew(\OxidEsales\Eshop\Application\Model\Article::class);
$product->oxarticles__oxtitle = new \OxidEsales\Eshop\Core\Field ('productTitle');
$product->oxarticles__oxshortdesc = new \OxidEsales\Eshop\Core\Field('shortdescription');
$product->save();

OXID eShop developer documentation

2018-02-21 69

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/using_database.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/using_database.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/using_database.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/using_database.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/using_database.rst

In this example the new record will be inserted into the table. To update an information, we

have to load the model, set the new data and call the save()-method:

There are other ways to do the same - without loading the data - just simply setting the ID
with the setId()-method:

In this example, it will be checked if this ID exists and if so, the record in the database will

be updated with the new record.

MAKING A QUERY

Using the ResultsetInterface :

Using the method ResultsetInterface::fetchAll() :

Important

$product = oxNew(\OxidEsales\Eshop\Application\Model\Article::class);
$product->load('demoId');
$product->oxarticles__oxtitle = new \OxidEsales\Eshop\Core\Field ('productTitle');
$product->oxarticles__oxshortdesc = new \OxidEsales\Eshop\Core\Field('shortdescription');
$product->save();

$product = oxNew(\OxidEsales\Eshop\Application\Model\Article::class);
$product->setId('demoId');
$product->oxarticles__oxtitle = new \OxidEsales\Eshop\Core\Field('productTitle');
$product->oxarticles__oxshortdesc = new \OxidEsales\Eshop\Core\Field('shortdescription');
$product->save();

$resultSet = \OxidEsales\Eshop\Core\DatabaseProvider::getDb()->select($query);
//Fetch the results row by row
if ($resultSet != false && $resultSet->count() > 0) {
 while (!$resultSet->EOF) {
 $row = $resultSet->getFields();
 //do something
 $resultSet->fetchRow();
 }
}

$resultSet = \OxidEsales\Eshop\Core\DatabaseProvider::getDb()->select($query);
//Fetch all at once (beware of big arrays)
$allResults = $resultSet->fetchAll()
foreach($allResults as $row) {
 //do something
};

2018-02-21 70

do not try something like this, you will lose the first result row:

TRANSACTIONS

If one transaction fails, the whole chain of nested transactions is rolled back completely. In
some cases it might not be evident that your transaction is already running within an other

transaction.

An example how to catch exceptions inside a database transaction:

MYSQL MASTER SLAVE

Doctrine DBAL handles the master slave replication for the OXID eShop on each request.

OXID eShop 6 follows these rules:

once the request was routed to the master, it stays on the master.

writes and transactions go to master.

If you are not careful in using the OXID eShop database API, this can lead .e.g to execute

more requests than necessary on the MySQL master sever and underutilize the MySQL

slave server.

DIFFERENT API METHODS FOR READ AND WRITE

 $resultSet = \OxidEsales\Eshop\Core\DatabaseProvider::getDb()->select($query);
 while ($row = $resultSet->fetchRow()) {
 //do something
 };

The point is: the ResultSet immediately executes the first call to ResultSet::fetchRow() in
its constructor, and
each following call to ResultSet::fetchRow() advances the content of ResultSet::fields to
the next row.
Do always access ResultSet::fields before calling ResultSet::fetchRow() again.

// Start transaction outside try/catch block
$database->startTransaction();
try {
 $database->commitTransaction();
} catch (\Exception $exception) {
 $database->rollbackTransaction();
 if (!$exception instanceof DatabaseException) {
 throw $exception;
 }
}

2018-02-21 71

Next

There is a difference between the methods DatabaseInterface::select() and

DatabaseInterface::execute() The method DatabaseInterface::select() can only be used for

read alike methods (SELECT, SHOW) that return a kind of result set. The method

DatabaseInterface::execute() must be used for write alike methods (INSERT, UPDATE,

DELETE) in OXID eShop 6.

Previous

© Copyright 2017 - 2018, OXID eSales AG.

2018-02-21 72

Edit on GitHubDocs » Module resources » Using namespaces

USING NAMESPACES

Topics to be covered
The backwards compatibility layer

the Unified Namespace

find the Unified Namespace equivalents for the old bc classes (like oxarticle)

how we marked classes that are not intended to be extended by a module

Module installation

old style (copy & paste)

new style (via composer)

How to extend the OXID eShop’s namespaced classes

in case your module does not yet use a namespace

in case your module does use it’s own namespace

Use your own namespaces in a module with OXID eShop

Install the module via composer or alternatively how to register your namespace in

the main composer.json

Use own module classes

Use module controllers that do not simply extend existing shop functionality

INTRODUCTION

The following part of the documentation will cover the namespaces and what this means

for a module developer. In short: we introduced namespaces in all the OXID eShop’s core

classes so that composer autoloader can be used.

You are able to extend the oxSomething classes (like oxarticle) in your module but we do

OXID eShop developer documentation

2018-02-21 73

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/using_namespaces_in_modules.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/using_namespaces_in_modules.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/using_namespaces_in_modules.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/using_namespaces_in_modules.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/using_namespaces_in_modules.rst

not recommend this for new code. When we moved the OXID eShop’s oxSomething

classes under namespace we not only removed the ‘ox’ Prefix from the class name but

gave some classes better suited names. (e.g. the former sysreq class now is named

OxidEsales\Eshop\Application\Controller\Admin\SystemRequirements , all controller classes now

have the postfix ‘Controller’ in their name). We will tell you how to find the new class

names a bit later in this documentation.

NOTE: We now did physically remove the deprecated oxSomething bc classes (by that

we mean all the old OXID eShop classes from before namespace era) while still offering

backwards compatibility in case your module still relies on the old style class names. This

BC layer is planned to be removed at some future time but you will have more than enough

time to port your modules before that will happen.

NOTE: In order to use composer autoload, folder structure and class files needs to
match the namespace (UpperCamelCase).

THE UNIFIED NAMESPACE (OXIDESALES\ESHOP)

The Unified Namespace (OxidEsales\Eshop) provides an edition independent namespace for

module and core developers.

Important

Please do not use the shop classes from the edition namespaces in your code! (More info)

NOTE: If you want to refer to a class name, always use the ‘::class’ notation instead of

using a plain string.

EQUIVALENTS FOR THE OLD BC CLASSES

See CE file CoreAutoloadBackwardsCompatibilityClassMap.php , which is an array mapping the

Unified Namespace class names to the pre OXID eShop namespace class names (what we

call the bc class names here). If you write a new module, please use the Unified

Namespace class names as the bc class names are deprecated and should not be used

for new code.

The OXID eShop itself still uses the old bc class names in some places but this will change

Example:

$articleFromUnifiedNamespace = oxNew(\OxidEsales\Eshop\Application\Model\Article::class);
//which is equivalent to the old style
$articleFromBcClass = oxNew('oxarticle');

2018-02-21 74

https://oxidforge.org/en/namespaces-in-oxid-eshop-6.html
https://oxidforge.org/en/namespaces-in-oxid-eshop-6.html
https://oxidforge.org/en/namespaces-in-oxid-eshop-6.html

in the near future.

CLASSES THAT ARE NOT TO BE EXTENDED BY A MODULE

We mark all classes that are not to be overwritten by a module with @internal but apart

from that there is currently no mechanism that prevents a module developer from trying to
extend such a shop class. We do not guarantee that the shop will work as expected if you

try to do that though. What can definitely not be extended by a module is the

OxidEsales\Eshop\Core\UtilsObject class.

MODULE INSTALLATION

Installing a module can be done as before by copying the module sources into the shop’s

module directory (old style) and then activating the module in the shop admin backend.

With namespaces in OXID eShop we have the possibility to let composer handle retrieving

and copying the module sources to the correct location for you. You still have to activate

the module in the shop admin either way.

Just create a composer.json in the module’s root directory

Go to the shop’s root directory and configure/require the module in the shop’s

composer.json.

The module sources now are located in the directory modules/myvendor/mymodule. Keep

in mind that any changes made in the module directory itself will be overwritten with the

next call to composer update (composer prompts for confirm though).

EXTEND AN OXID ESHOP CLASS WITH A MODULE

If you want to adjust a standard OXID eShop class with a module (let’s chose

OxidEsales\Eshop\Application\Model\Article formerly known as oxarticle for example), you

{
 "name": "myvendor/mymodule",
 "extra": {
 "oxideshop": {
 "target-directory": "myvendor/mymodule"
 }
 }
}

composer config repositories.myvendor/mymodule vcs https://github.com/myvendor/mymodule
composer require myvendor/mymodule:dev-master

2018-02-21 75

need to extend the module class (let’s say MyVendorMyModuleArticle) from a Unified

Namespace parent class (MyVendorMyModuleArticle_parent). The shop creates the class chain

in such a way that once your module is activated, all methods from the

OxidEsales\Eshop\Application\Model\Article are available in MyVendorMyModuleArticle and can

be overwritten with module functionality.

IMPORTANT: It is only possible to extend shop BC and Unified Namespace classes.

Directly extending classes from the shop edition namespaces is not allowed and such a
module can not be activated. Trying to activate it gives an error in the admin backend.

NO OWN MODULE NAMESPACE

Create a module class that extends OxidEsales\Eshop\Application\Model\Article , for example

Backwards compatible way, not recommended when writing new code:

The recommended way to extend a shop core class with a
module in OXID eShop when the module does not support namespaces yet is as

follows:

<?php
 # Example for a module without own namespace
 class MyVendorMyModuleArticle extends MyVendorMyModuleArticle_parent {

 public function getSize()
 {
 $originalSize = parent::getSize();

 //double the size
 $newSize = 2 * $originalSize;

 return $newSize;
 }
 }

Register the extend class in the module's metadata.php
Here we extend the shop's OxidEsales\Eshop\Application\Model\Article via the bc class name
//.....
'extend' => array(
 'oxarticle' => 'myvendor/mymodule/Application/Model/MyVendorMyModuleArticle'
)
//.....

Register the extend class in the module's metadata.php
//.....
'extend' => array(
 \OxidEsales\Eshop\Application\Model\Article::class =>
 'myvendor/mymodule/Application/Model/MyVendorMyModuleArticle'

2018-02-21 76

USE YOUR OWN NAMESPACES WITH OXID ESHOP

Now create a class like before to extend a shop class but this time give it a namespace:

Register the class in the module’s metadata,php:

INSTALL AND REGISTER YOUR MODULE WITH COMPOSER

To have the composer autoloader find your module file via namespace, create a
composer.json file in the module’s root directory.

)
//.....

<?php
 # Example for module with own namespace

 namespace MyVendor\MyModuleNamespace\Application\Model;

 class MyModuleArticle extends MyModuleArticle_parent
 {
 public function getSize()
 {
 $originalSize = parent::getSize();

 //double the size
 $newSize = 2 * $originalSize;

 return $newSize;
 }
 }

Register the extend class in the module's metadata.php
//.....
'extend' => array(
 \OxidEsales\Eshop\Application\Model\Article::class =>
 MyVendor\MyModuleNamespace\Application\Model\MyModuleArticle::class
)
//.....

{
 "name": "myvendor/mymodule",
 "autoload": {
 "psr-4": {
 "MyVendor\\MyModuleNamespace\\": "./"
 }
 },
 "extra": {
 "oxideshop": {
 "target-directory": "myvendor/mymodule"
 }
 }

2018-02-21 77

Then in the shop’s root directory do

and run composer update.

In case you do not want to handle module installation with composer but copy & paste it
old style into the shop’s module directory, register your module namespace directly in the

shop’s main composer.json:

And then run composer update so composer can update it’s autoload file.

USING NAMESPACES IN MODULE CLASSES THAT DO NOT EXTEND
OXID ESHOP CLASSES

Add for example a model class to your module:

There is no need to register this class in the metadata.php as the composer autoloader will

do the trick.

}

composer config repositories.myvendor/mymodule vcs https://github.com/myvendor/mymodule
composer require myvendor/mymodule:dev-master

"autoload": {
 "psr-4": {
 "OxidEsales\\EshopCommunity\\": "./source",

 "MyVendor\\MyModuleNamespace\\": "./source/modules/myvendor/mymodule"
 }
 }

<?php
namespace MyVendor\MyModuleNamespace\Application\Model;

class MyModuleModel
{
 public function doSomething()
 {
 //.....
 // do something
 //......
 return $someResult;
 }
}

<?php

2018-02-21 78

or with oxNew instead of new

In the module’s metadata you only need to register the class extending the shop’s

payment controller but not your module’s new model class.

USE MODULE CONTROLLERS THAT DO NOT SIMPLY EXTEND
EXISTING SHOP FUNCTIONALITY

In case you want to not only extend shop functionality in a module but for example want to
introduce a new controller that handles own form data we recommend you have a look into

what changed with module metadata version 2.0. In short: in case you want introduce

 namespace MyVendor\MyModuleNamespace\Application\Controller;

 use MyVendor\MyModuleNamespace\Application\Model\MyModuleModel;

 class MyModulePaymentController extends MyModulePaymentController_parent
 {
 public function render()
 {
 $template = parent::render();
 //.....
 $model = new MyModuleModel;
 $someResult = $model->doSomething();
 // do something else
 //......
 return $template;
 }

<?php
 namespace MyModuleNamespace/Application/Controller;

 class MyModulePaymentController extends MyModulePaymentController_parent
 {
 public function render()
 {
 $template = parent::render();
 //.....
 $model = oxNew(\MyVendor\MyModuleNamespace\Application\Model\MyModuleModel::class);
 $someResult = $model->doSomething();
 // do something else
 //......
 return $template;
 }

Register the extend class in the module's metadata.php
//.....
'extend' => array(
 \OxidEsales\Eshop\Application\Controller\PaymentController::class
 => MyVendor\MyModuleNamespace\Application\Controller\MyModulePaymentController::class
)
//.....

2018-02-21 79

Next

controllers in your module that support namespaces and that do not simply extend shop

functionality, you need to use metadata version 2.0 and register these controller classes in
the module’s metadata.php file.

More information regarding this topic can be found here.

Previous

© Copyright 2017 - 2018, OXID eSales AG.

2018-02-21 80

https://docs.oxid-esales.com/developer/en/6.0/modules/metadata/version20.html

Edit on GitHub

Next

Docs » Module resources » Tutorials and recipes

TUTORIALS AND RECIPES

Steps for creating a basic module

How to extend frontend user form?

Override existing OXID eShop functionality

Scripts to help porting any module to OXID eShop 6

Previous

© Copyright 2017 - 2018, OXID eSales AG.

OXID eShop developer documentation

2018-02-21 81

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/tutorials/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/tutorials/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/tutorials/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/tutorials/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/tutorials/index.rst
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html

Next

Edit on GitHub

Docs » Module resources » Tutorials and recipes » Steps for creating a basic module

STEPS FOR CREATING A BASIC MODULE

Initiate the repository

Create a composer.json file

Create a file metadata.php

Override existing OXID eShop functionality

Create the necessary module structure

Add dependencies and autoload via composer

Test your module

Demo Logger module could be used as a simple example from GitHub repository.

PayPal module could be used as an advanced example from GitHub repository.

Previous

© Copyright 2017 - 2018, OXID eSales AG.

OXID eShop developer documentation

2018-02-21 82

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/tutorials/create_basic_module.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/tutorials/create_basic_module.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/tutorials/create_basic_module.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/tutorials/create_basic_module.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/tutorials/create_basic_module.rst
https://github.com/OXID-eSales/logger-demo-module
https://github.com/OXID-eSales/logger-demo-module
https://github.com/OXID-eSales/logger-demo-module
https://github.com/OXID-eSales/logger-demo-module
https://github.com/OXID-eSales/logger-demo-module
https://github.com/OXID-eSales/PayPal
https://github.com/OXID-eSales/PayPal
https://github.com/OXID-eSales/PayPal
https://github.com/OXID-eSales/PayPal
https://github.com/OXID-eSales/PayPal

Edit on GitHub

Docs » Module resources » Tutorials and recipes » How to extend frontend user form?

HOW TO EXTEND FRONTEND USER
FORM?

There is a possibility to add additional form input fields in frontend without adding

additional logic how to save the field data. This page will describe how to achieve this by

using extend user module example.

PREPARATION

For having additional input field in user form first of all there will be a need to create new

column in user table. This can be achieved by using module events which would create a
column. In this page an example of database table column called

EXTENDUSER_ADDITIONALCONTACTINFO will be used.

TEMPLATE

The block which will have to be extend is located in template file
form/fieldset/user_billing.tpl. To extend it there will be a need to create a template file and

describe it in metadata.php file:

/views/user.tpl contents could look like this:

'blocks' => array(
 array('template' => 'form/fieldset/user_billing.tpl',
'block'=>'form_user_billing_country', 'file'=>'/views/user.tpl'),
),

[{$smarty.block.parent}]

<div class="form-group">
 <label class="control-label col-lg-3">Additional contact info</label>

OXID eShop developer documentation

2018-02-21 83

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/tutorials/frontend_user_forms.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/tutorials/frontend_user_forms.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/tutorials/frontend_user_forms.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/tutorials/frontend_user_forms.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/tutorials/frontend_user_forms.rst
https://github.com/OXID-eSales/extend-user-demo-module
https://github.com/OXID-eSales/extend-user-demo-module
https://github.com/OXID-eSales/extend-user-demo-module
https://github.com/OXID-eSales/extend-user-demo-module
https://github.com/OXID-eSales/extend-user-demo-module
https://github.com/OXID-eSales/extend-user-demo-module
https://github.com/OXID-eSales/extend-user-demo-module

Most important thing here is input field with name attribute

name="invadr[oxuser__extenduser_additionalcontactinfo]" which says for OXID eShop to try
write into table oxuser column EXTENDUSER_ADDITIONALCONTACTINFO provided value.

MODIFY WHITE LISTED FIELDS

For security reasons there is an array of “white listed” fields. Only those table columns

which has equivalent field in “white list” array can be updated by submitting form and

passing parameters via POST request.

There are two classes which contains white listed fields:

For table oxusers - OxidEsales\EshopCommunity\Application\Model\User\UserUpdatableFields .

For table oxaddress - OxidEsales\EshopCommunity\Application\Model\User\UserShippingAddressUpdatableFields .

So to add additional field to the white list it’s needed to extend one of those classes. In
oxuser table case - OxidEsales\EshopCommunity\Application\Model\User\UserUpdatableFields .

Entry in module metadata file would look like this:

And the contents of file could look like this:

 <div class="col-lg-9">
 <input class="form-control" type="text" maxlength="128"
 name="invadr[oxuser__extenduser_additionalcontactinfo]"
 value="[{$oxcmp_user->oxuser__extenduser_additionalcontactinfo->value}]"
 required=""
 >
 </div>
</div>

'extend' => [
 \OxidEsales\Eshop\Application\Model\User\UserUpdatableFields::class =>
\OxidEsales\ExtendUser\UserUpdatableFields::class
],

namespace OxidEsales\ExtendUser;
/**
 * @see \OxidEsales\Eshop\Application\Model\User\UserUpdatableFields
 */
class UserUpdatableFields extends UserUpdatableFields_parent
{
 public function getUpdatableFields()
 {
 $updatableFields = parent::getUpdatableFields();
 return array_merge($updatableFields, ['EXTENDUSER_ADDITIONALCONTACTINFO']);
 }
}

2018-02-21 84

Next

In this way into updatable fields array would be added new field -
EXTENDUSER_ADDITIONALCONTACTINFO .

So after module activation new form functioning field will appear in the user form.

Previous

© Copyright 2017 - 2018, OXID eSales AG.

2018-02-21 85

Edit on GitHub

Docs » Module resources » Tutorials and recipes » Override existing OXID eShop functionality

OVERRIDE EXISTING OXID ESHOP
FUNCTIONALITY

This page describes how to override default OXID eShop functionality.

EXTENDING ‘ADD TO BASKET’ FUNCTIONALITY

In this section the existing “loggerdemo” module will be used which logs a product’s id
when it is added to the basket.

OVERRIDE FUNCTIONALITY

To override functionality there is a need to create a module class. Here, the “loggerdemo”

module will be used as an example.

There is a need to create a child class - OxidEsales\LoggerDemo\Model\Basket - which should

override OXID eShop class OxidEsales\EshopCommunity\Application\Model\Basket method

addToBasket :

Note

Here oe - module developer vendor name, loggerdemo - module name.

.
└── source
 └── modules
 └── oe
 └──loggerdemo
 └── Model
 └── Basket.php

OXID eShop developer documentation

2018-02-21 86

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/tutorials/override_functionality.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/tutorials/override_functionality.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/tutorials/override_functionality.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/tutorials/override_functionality.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/tutorials/override_functionality.rst
https://github.com/OXID-eSales/logger-demo-module
https://github.com/OXID-eSales/logger-demo-module
https://github.com/OXID-eSales/logger-demo-module

The class OxidEsales\LoggerDemo\Model\Basket could have contents like this:

In this example method addToBasket is overridden and it adds logging functionality. To

override the method one needs to:

Extend a Unified Namespace class - <className>_parent , in this case it is Basket_parent .

Call parent method, so the chain would not be broken.

AUTOLOAD MODULE CLASSES

The file composer.json in module root directory must be created (see “How to create a
module installable via composer?”) and module namespace must be defined (see “Add

dependencies and autoload via composer: Namespace”).

The composer.json file in module root directory could look like this:

namespace OxidEsales\LoggerDemo\Model;
use OxidEsales\EventLoggerDemo\BasketItemLogger;

class Basket extends Basket_parent
{
 public function addToBasket(
 $productID,
 $amount,
 $sel = null,
 $persParam = null,
 $override = false,
 $bundle = false,
 $oldBasketItemId = null
) {
 $basketItemLogger = new BasketItemLogger($this->getConfig()->getLogsDir());
 $basketItemLogger->logItemToBasket($productID);
 return parent::addToBasket($productID, $amount, $sel, $persParam, $override,
$bundle, $oldBasketItemId);
 }
}

{
 "name": "oxid-esales/logger-demo-module",
 "description": "This package contains demo module for OXID eShop.",
 "type": "oxideshop-module",
 "keywords": ["oxid", "modules", "eShop", "demo"],
 "homepage": "https://www.oxid-esales.com/en/home.html",
 "license": [
 "GPL-3.0",
 "proprietary"
],
 "require": {
 "oxid-esales/event_logger_demo": "dev-master"
 },
 "autoload": {
 "psr-4": {

2018-02-21 87

https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html#modules-unified-namespaces-20170526
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html#modules-unified-namespaces-20170526
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html#modules-unified-namespaces-20170526

Next

The project composer.json file should have entries looking like this:

To register a namespace and download dependencies there is a need to run composer

update command in project root directory:

Composer will generate the PSR-4 autoload file with included module. So at this point

OXID eShop will be able to autoload classes.

ADD ENTRY TO MODULE METADATA FILE

OXID eShop needs to know which class should be extended, to do this there is a need to
add a record in metadata.php file:

Previous

 "OxidEsales\\LoggerDemo\\": "../../../source/modules/oe/loggerdemo"
 }
 },
 "minimum-stability": "dev",
 "prefer-stable": true,
 "extra": {
 "oxideshop": {
 "target-directory": "oe/loggerdemo"
 }
 }
}

"repositories": {
 "oxid-esales/logger-demo-module": {
 "type": "path",
 "url": "source/modules/oe/loggerdemo"
 }
},
"require": {
 "oxid-esales/logger-demo-module": "dev-master"
}

composer update

'extend' => [
 \OxidEsales\Eshop\Application\Model\Basket::class =>
\OxidEsales\LoggerDemo\Model\Basket::class,
],

2018-02-21 88

Edit on GitHub

Docs » Module resources » Tutorials and recipes »
Scripts to help porting any module to OXID eShop 6

SCRIPTS TO HELP PORTING ANY MODULE
TO OXID ESHOP 6

This document provides a complementary information to the previously written “Steps to
port a module for the OXID eShop version 6.0”. It describes how it’s possible to automate

the majority of module porting actions by using the scripts written below. Feel free to use

the provided information as an additional aid to reduce the time needed and increase the

quality of the outcome while porting old OXID eShop modules.

ENVIRONMENT REQUIREMENTS

OXID ESHOP VM

All scripts which are used in the segments below were tested inside the official OXID

eShop VM with an existing installation of OXID eShop version v6.0.0 and with development

requirements included (e.g. oxid-esales/testing-library).

CUSTOM ENVIRONMENT

Despite the fact that it’s much easier to get started with an OXID eShop VM it’s also

possible to use any other environment which would match the system requirements raised

by OXID eShop v6.0.0.

On top of the requirements set by OXID eShop the following tools are being used

throughout the sections below (minimum already tested version is provided in
parentheses):

GNU find (>=4.4.2)

GNU grep (>=2.16)

GNU sed (>=4.2.2)

OXID eShop developer documentation

2018-02-21 89

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/tutorials/porting_tool.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/tutorials/porting_tool.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/tutorials/porting_tool.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/tutorials/porting_tool.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/tutorials/porting_tool.rst
https://github.com/OXID-eSales/oxvm_eshop
https://github.com/OXID-eSales/oxvm_eshop
https://github.com/OXID-eSales/oxvm_eshop
https://github.com/OXID-eSales/oxvm_eshop
https://github.com/OXID-eSales/oxvm_eshop
https://github.com/OXID-eSales/oxvm_eshop
https://github.com/OXID-eSales/oxideshop_ce/tree/v6.0.0
https://github.com/OXID-eSales/testing_library
https://oxidforge.org/en/oxid-eshop-v6-0-0-beta-system-requirements.html
https://oxidforge.org/en/oxid-eshop-v6-0-0-beta-system-requirements.html
https://oxidforge.org/en/oxid-eshop-v6-0-0-beta-system-requirements.html
https://github.com/OXID-eSales/oxideshop_ce/tree/v6.0.0

GNU less (>=458)

GNU wc (>=8.21)

GNU cat (>=8.21)

GNU tail (>=8.21)

FSF iconv (>=2.19)

BSD file (>=5.14)

MANDATORY ACTIONS

Before starting to execute scripts which are written in the sections below be sure to export

the following environment variables:

ESHOP_PATH - full path to where eShop is installed (by default in VM it’s /var/www/oxideshop);

MODULE_NAME - directory name of module (vendor_name/module_name) which is being ported;

OLD_MODULE_NAME - directory name of module (vendor_name/module_name) which is not ported yet (an

older version of the same module).

An example on how to set the environment variables if the module in question would be

oxid-esales/paypal-module:

In the above example oe/paypal_old represents an older version of oxid-esales/paypal-

module (not ported yet).

PORTING TOPICS

All module porting process is divided into separate topics which in turn are grouped in two

lists:

Minimal - Mandatory changes required to work with OXID eShop >= v6.0.0;

Full - Optional, but highly recommended changes.

MINIMAL PORTING

1. Ensure tests are running and covers important logic

2. Convert all files to UTF-8

3. Adjust for BC breaks in PHP versions

4. Adjust removed functionality

export ESHOP_PATH="/var/www/oxideshop"
export MODULE_NAME="oe/paypal"
export OLD_MODULE_NAME="oe/paypal_old"

2018-02-21 90

https://github.com/OXID-eSales/paypal
https://github.com/OXID-eSales/paypal
https://github.com/OXID-eSales/paypal
https://github.com/OXID-eSales/oxideshop_ce/tree/v6.0.0

5. Adjust your database code to the new DB Layer

FULL PORTING

6. Adjust the code style of your modules code

7. Replace BC Layer classes

8. Installable via composer

9. Introduce a namespace in your module

1. ENSURE TESTS ARE RUNNING AND COVERS
IMPORTANT LOGIC

EXECUTE TESTS

The following line will initiate tests for the given module only. In order to pass this criteria

there should not be any failures or errors.

GENERATE CODE COVERAGE

The line below will initiate execution of tests and generation of code coverage for given

module only. It uses functionality provided by xdebug so this extension must be loaded

and activated in order to proceed. In order to pass this criteria make sure the most

important logic is covered by the tests.

2. CONVERT ALL FILES TO UTF-8

FILES ENCODED

The following script will print out any file which is not UTF-8 compatible (UTF-8 and

us-ascii). In order to pass this criteria the output should empty.

In case there are non UTF-8 compatible files one can simply use utility called iconv which

(cd "$ESHOP_PATH" && PARTIAL_MODULE_PATHS="$MODULE_NAME" ADDITIONAL_TEST_PATHS=''
RUN_TESTS_FOR_SHOP=0 RUN_TESTS_FOR_MODULES=1 ACTIVATE_ALL_MODULES=1 vendor/bin/runtests)

(cd "$ESHOP_PATH" && PARTIAL_MODULE_PATHS="$MODULE_NAME" ADDITIONAL_TEST_PATHS=''
RUN_TESTS_FOR_SHOP=0 RUN_TESTS_FOR_MODULES=1 ACTIVATE_ALL_MODULES=1 vendor/bin/runtests -
-coverage-html="$ESHOP_PATH/coverage_report/$MODULE_NAME" AllTestsUnit)

(cd "$ESHOP_PATH/source/modules/$MODULE_NAME/" && find . -type f -regex
".*/.*\.\(php\|tpl\|sql\)" -exec file -i "{}" \; | grep -v 'us-ascii' | grep -v 'utf-8')

2018-02-21 91

helps to re-encode given files to make them UTF-8 compatible, please consider the

following example:

ENCODING IN TRANSLATION FILES

All translation files should explicitly declare UTF-8 as encoding. The following three

commands will return the same number of lines in case all translation files have explicit

declaration of UTF-8 as encoding:

In case the number of lines is different make sure to encode and declare UTF-8 as

encoding. To find out which exact files have wrong declaration of encoding try to execute

the following:

BOM

As described in PSR-1 “Files MUST use only UTF-8 without BOM for PHP code.”.

The following command will show all UTF-8 encoded files which have BOM embedded at

the beginning of the file. In order to pass this criteria the output of given command should

be empty.

In case there are files with embedded BOM one could try and use the following command

to remove it:

3. ADJUST FOR BC BREAKS IN PHP VERSIONS

iconv -f ISO-8859-1 -t UTF-8 input.php > output.php

find "$ESHOP_PATH/source/modules/$MODULE_NAME/" | grep '_lang.php' | wc -l
grep --include *_lang.php -r 'charset' "$ESHOP_PATH/source/modules/$MODULE_NAME/" | wc -l
grep --include *_lang.php -r 'charset' "$ESHOP_PATH/source/modules/$MODULE_NAME/" | grep
'UTF-8' | wc -l

grep --include *_lang.php -r 'charset' "$ESHOP_PATH/source/modules/$MODULE_NAME/" | grep -v
-i 'UTF-8'

(cd "$ESHOP_PATH/source/modules/$MODULE_NAME/" && find . -type f -regex
".*/.*\.\(php\|tpl\|sql\)" -exec file "{}" \; | grep 'with\ BOM')

tail --bytes=+4 with_bom.php > without_bom.php

2018-02-21 92

http://www.php-fig.org/psr/psr-1/

At the moment this topic is not automated thus one has to manually look at all recent BC

breaking changes which are described in the following documents:

BC breaking changes from PHP 5.3 to 5.4

BC breaking changes from PHP 5.4 to 5.5

BC breaking changes from PHP 5.5 to 5.6

4. ADJUST REMOVED FUNCTIONALITY

At the moment this topic is not automated thus one has to follow the list of removed

functionality at OXID eShop v6.0.0 changelog and apply necessary changes.

5. ADJUST YOUR DATABASE CODE TO THE NEW DB
LAYER

NEW CLASSES ARE USED

All OXID eShop BC classes were deprecated and a new database interface was

introduced. These changes requires one to update the class name which is used for

database access. The following commands will try to compare the number of lines which

represents old database classes (oxDb) used in old version of module versus number of

new classes (DatabaseProvider) in module being ported (ideally the numbers should

match):

Note: It’s quite possible that line numbers wouldn’t match in case new database related

statements were added.

OLD CLASSES REMOVED

Just as a safety measure, let’s make sure that old classes (oxDb) are not present in the

ported module (output should be empty):

EVALUATE POSSIBLE BC BREAKING CHANGES

Starting with the release of OXID eShop v6.0.0 there are some BC breaking changes for

database select and selectLimit methods. The changes are described with more detail at

grep --include *.php -r 'oxDb' "$ESHOP_PATH/source/modules/$OLD_MODULE_NAME/" | wc -l
grep --include *.php -r 'DatabaseProvider' "$ESHOP_PATH/source/modules/$MODULE_NAME/" | wc
-l

grep --include *.php -r 'oxDb' "$ESHOP_PATH/source/modules/$MODULE_NAME/"

2018-02-21 93

http://php.net/manual/en/migration54.incompatible.php
http://php.net/manual/en/migration54.incompatible.php
http://php.net/manual/en/migration54.incompatible.php
http://php.net/manual/en/migration54.incompatible.php
http://php.net/manual/en/migration54.incompatible.php
http://php.net/manual/en/migration54.incompatible.php
http://php.net/manual/en/migration54.incompatible.php
http://php.net/manual/en/migration54.incompatible.php
http://php.net/manual/en/migration54.incompatible.php
http://php.net/manual/en/migration54.incompatible.php
http://php.net/manual/en/migration54.incompatible.php
http://php.net/manual/en/migration54.incompatible.php
http://php.net/manual/en/migration54.incompatible.php
http://php.net/manual/en/migration54.incompatible.php
http://php.net/manual/en/migration54.incompatible.php
http://php.net/manual/en/migration55.incompatible.php
http://php.net/manual/en/migration55.incompatible.php
http://php.net/manual/en/migration55.incompatible.php
http://php.net/manual/en/migration55.incompatible.php
http://php.net/manual/en/migration55.incompatible.php
http://php.net/manual/en/migration55.incompatible.php
http://php.net/manual/en/migration55.incompatible.php
http://php.net/manual/en/migration55.incompatible.php
http://php.net/manual/en/migration55.incompatible.php
http://php.net/manual/en/migration55.incompatible.php
http://php.net/manual/en/migration55.incompatible.php
http://php.net/manual/en/migration55.incompatible.php
http://php.net/manual/en/migration55.incompatible.php
http://php.net/manual/en/migration55.incompatible.php
http://php.net/manual/en/migration55.incompatible.php
http://php.net/manual/en/migration56.incompatible.php
http://php.net/manual/en/migration56.incompatible.php
http://php.net/manual/en/migration56.incompatible.php
http://php.net/manual/en/migration56.incompatible.php
http://php.net/manual/en/migration56.incompatible.php
http://php.net/manual/en/migration56.incompatible.php
http://php.net/manual/en/migration56.incompatible.php
http://php.net/manual/en/migration56.incompatible.php
http://php.net/manual/en/migration56.incompatible.php
http://php.net/manual/en/migration56.incompatible.php
http://php.net/manual/en/migration56.incompatible.php
http://php.net/manual/en/migration56.incompatible.php
http://php.net/manual/en/migration56.incompatible.php
http://php.net/manual/en/migration56.incompatible.php
http://php.net/manual/en/migration56.incompatible.php
https://oxidforge.org/en/oxid-eshop-v6-0-0-beta1-detailed-code-changelog.html
https://oxidforge.org/en/oxid-eshop-v6-0-0-beta1-detailed-code-changelog.html
https://oxidforge.org/en/oxid-eshop-v6-0-0-beta1-detailed-code-changelog.html
https://oxidforge.org/en/oxid-eshop-v6-0-0-beta1-detailed-code-changelog.html
https://oxidforge.org/en/oxid-eshop-v6-0-0-beta1-detailed-code-changelog.html
https://oxidforge.org/en/oxid-eshop-v6-0-0-beta1-detailed-code-changelog.html
https://oxidforge.org/en/oxid-eshop-v6-0-0-beta1-detailed-code-changelog.html
https://github.com/OXID-eSales/oxideshop_ce/blob/v6.0.0/source/Core/Autoload/BackwardsCompatibilityClassMap.php#L12-L572
https://github.com/OXID-eSales/oxideshop_ce/blob/v6.0.0/source/Core/Autoload/BackwardsCompatibilityClassMap.php#L12-L572
https://github.com/OXID-eSales/oxideshop_ce/blob/v6.0.0/source/Core/Autoload/BackwardsCompatibilityClassMap.php#L12-L572
https://github.com/OXID-eSales/oxideshop_ce/tree/v6.0.0

Quick guide to port a module for OXID eShop version 6.0. Use the following line to locate

any usages of the above mentioned methods inside the module:

In case the mentioned methods are found please apply the necessary changes as it’s
described in Quick guide to port a module for OXID eShop version 6.0 (“Stick to database

interfaces” topic).

6. ADJUST THE CODE STYLE OF YOUR MODULES
CODE

ADJUST CODE SNIFFER SETTINGS

Initially OXID eShop code sniffer settings are adjusted to scan only the OXID eShop core

files thus it requires some changes in order to be able to run against given module. The

following line will update code sniffer settings which would not ignore module files

anymore:

RUN CODE SNIFFER

Given command will trigger the execution of OXID eShop code sniffer against provided

module. In order to pass the criteria the output should be empty:

In case the output is not empty, please follow the given messages and apply the necessary

changes.

7. REPLACE BC LAYER CLASSES

BC LAYER CLASSES

Starting from OXID eShop v6.0.0 a BC layer was introduced, which allows old modules to
work with the updated OXID eShop core. BC layer is a collection of class aliases which

maps old OXID eShop classes (e.g. oxArticle) into new namespaced classes (e.g.

OxidEsalesEshopApplicationModelArticle). Keep in mind that the solution is temporary

and is included to allow for an easy transition into the new OXID eShop version. All these

grep --include *.php -r -i -P "\-\>\s*?(select|selectLimit)\s*?\("
"$ESHOP_PATH/source/modules/$OLD_MODULE_NAME/"

sed -i '/modules/d' "$ESHOP_PATH/vendor/oxid-esales/coding-standards/Oxid/ruleset.xml"

(cd "$ESHOP_PATH" && vendor/bin/phpcsoxid "source/modules/$MODULE_NAME/")

2018-02-21 94

https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://github.com/OXID-eSales/oxideshop_ce/tree/v6.0.0

BC classes are considered as deprecated thus it’s highly recommended to replace old

classes with the namespaced equivalents.

Note: Before proceeding with the commands below please make sure you have have

your environment variables prepared (ESHOP_PATH and MODULE_NAME). Note: After

execution of automated replace for BC classes it might happen that the alignment of

variables within comment blocks are broken thus it might be a good idea to re-run code

style check.

In order to automate the replacing of BC classes consider using the following command

which will create a script responsible for PHP file update at /tmp/bc_change.php :

cat << 'EOF' > /tmp/bc_change.php
<?php
count($argv) > 1 || die("File name missing!\n"); $filename = $argv[1];
file_exists($filename) || die("Given file '$filename' does not exist!\n");
getenv('ESHOP_PATH') || die("Please define 'ESHOP_PATH' environment variable!\n");
$bcMapFilename = getenv('ESHOP_PATH') .
'/source/Core/Autoload/BackwardsCompatibilityClassMap.php';
file_exists($bcMapFilename) || die("BC class layer map missing, please make sure file
'$bcMapFilename' is available!\n");

$bcMap = array_map(function($value) { return '\\' . $value; }, require($bcMapFilename));
$contents = file_get_contents($filename);

$methodsWithFirstArgumentAsBcClass = ['oxNew', '::set', '::get', 'resetInstanceCache',
'getComponent', 'getMock', 'assertInstanceOf', 'setExpectedException', 'prophesize'];
$phpdocTags = ['var', 'param', 'return', 'mixin', 'throws', 'see'];

preg_match_all('/[^\S\n]*use[^\S\n]+[\w\\\\]*?(?P<class>\w+)[^\S\n]*;/i', $contents,
$matches);
$bcMapKeysToIgnore = $matches['class'];
foreach ($bcMapKeysToIgnore as $class) {
 unset($bcMap[strtolower($class)]);
}

foreach ($bcMap as $bcClass => $nsClass) {
 $replaceMap = [
 '/\b((' . implode('|', $methodsWithFirstArgumentAsBcClass) . ')\s*\(\s*)["\']' . $bcClass
. '["\']/i' => "1nsClass::class",
 '/\b(new\s+)' . $bcClass . '\b(\s*[;\()])/i' => "1nsClass$2",
 '/\b(catch\s+\(\s*)' . $bcClass . '(\s+\$)/i' => "1nsClass$2",
 '/(\@\b(' . implode('|', $phpdocTags) . ')(\s+|\s+\S+\s*\|\s*))' . $bcClass . '\b/i' =>
"1nsClass",
 '/\b(class\s+\w+\s+extends\s+)[\\\\]?' . $bcClass . '\b/i' => "$1$nsClass",
 '/\b(instanceof\s+)' . $bcClass . '\b/i' => "$1$nsClass",
 '/(?<!\\\\)\b' . $bcClass . '(\s*::\s*\$?\w+)/i' => "$nsClass$1",
 '/(?<!\\\\)\b' . $bcClass . '(\s+\$\w+\s*[,\)])/i' => "$nsClass$1",
 '/\buse\s+\\\\' . $bcClass. '\s*;/i' => "",
];

 $contents = preg_replace(array_keys($replaceMap), array_values($replaceMap), $contents);
}

$contents && file_put_contents($filename, $contents) || die("There was an error while
executing 'preg_replace'!\n");

2018-02-21 95

https://github.com/OXID-eSales/oxideshop_ce/blob/v6.0.0/source/Core/Autoload/BackwardsCompatibilityClassMap.php#L12-L572
https://github.com/OXID-eSales/oxideshop_ce/blob/v6.0.0/source/Core/Autoload/BackwardsCompatibilityClassMap.php#L12-L572
https://github.com/OXID-eSales/oxideshop_ce/blob/v6.0.0/source/Core/Autoload/BackwardsCompatibilityClassMap.php#L12-L572
https://github.com/OXID-eSales/oxideshop_ce/blob/v6.0.0/source/Core/Autoload/BackwardsCompatibilityClassMap.php#L12-L572
https://github.com/OXID-eSales/oxideshop_ce/blob/v6.0.0/source/Core/Autoload/BackwardsCompatibilityClassMap.php#L12-L572
https://github.com/OXID-eSales/oxideshop_ce/blob/v6.0.0/source/Core/Autoload/BackwardsCompatibilityClassMap.php#L12-L572
https://github.com/OXID-eSales/oxideshop_ce/blob/v6.0.0/source/Core/Autoload/BackwardsCompatibilityClassMap.php#L12-L572
https://github.com/OXID-eSales/oxideshop_ce/blob/v6.0.0/source/Core/Autoload/BackwardsCompatibilityClassMap.php#L12-L572
https://github.com/OXID-eSales/oxideshop_ce/blob/v6.0.0/source/Core/Autoload/BackwardsCompatibilityClassMap.php#L12-L572

In order to apply the above script for all PHP files inside a module consider using the

following command snippet:

Unfortunately it’s not possible to automate every case of BC classes replacement. To be

able to manually evaluate every ambiguous BC class usage consider using the following

snippet:

In case there are a lot of entries to evaluate please consider using a pager as following:

In case there are a lot of false positive results within given test suites consider skipping the

evaluation for these files:

In order to pass the given porting criteria please replace every found old BC class usage

into the namespaced one. Consider using BC class map as a guide to know which class to

EOF

(cd "$ESHOP_PATH/source/modules/$MODULE_NAME/" && find . -type f -regex ".*/.*\.\php" | cut
-c 3-) | while read MODULE_FILE_NAME; do
 echo "Processing file: $MODULE_FILE_NAME";

 php /tmp/bc_change.php "$ESHOP_PATH/source/modules/$MODULE_NAME/$MODULE_FILE_NAME"
done

BC_CLASS_PAIRS=$(cat "$ESHOP_PATH/source/Core/Autoload/BackwardsCompatibilityClassMap.php" |
grep '=>' | sed 's/\\\\/\\/g')
BC_CLASS_LIST=$(echo "$BC_CLASS_PAIRS" | sed -r 's/.*'\''(\w+)'\''.*/\1/g')
BC_CLASS_LIST_PIPED=$(echo "$BC_CLASS_LIST" | paste -sd "|" | sed -r 's/(.*)/\(\1\)/')
BC_CLASS_SEARCH_PATTERN='(?<bc_match_quotes>"|'"'"'|)\b(?<!\$|\/|=|-|_|{|\?
|\`|*|:|\[|\.|,|\\|="|='"'"'|<|>|\(|\))('$BC_CLASS_LIST_PIPED')(?!\$|\/|=|-|_|}|\?
|\`|*|:|\]|\.|,|->|\\|>|<|@|\(|\))\b\k<bc_match_quotes>|(?<!\\)(?
<bc_skip_quotes>["'"'"']).*?(?<!\\)\k<bc_skip_quotes>(*SKIP)(?
!)|\w*(\/**|*|\/\/|\#).*(*SKIP)(?!)'
SEARCH_FILE_LIST=$(find "$ESHOP_PATH/source/modules/$MODULE_NAME/" -type f -iregex
'.*/.*\.\(php\|tpl\)' -not -iregex '.*/metadata\.php')
echo "$SEARCH_FILE_LIST" | xargs -n1 grep --color=always -iP -H -n
"$BC_CLASS_SEARCH_PATTERN"

echo "$SEARCH_FILE_LIST" | xargs -n1 grep --color=always -iP -H -n
"$BC_CLASS_SEARCH_PATTERN" | less -r

SEARCH_FILE_LIST_WO_TESTS=$(find "$ESHOP_PATH/source/modules/$MODULE_NAME/" -type f -iregex
'.*/.*\.\(php\|tpl\)' -not -iregex '.*/metadata\.php' -not -iregex '.*Test\.php' -not -iregex
'.*/tests/.*')
echo "$SEARCH_FILE_LIST_WO_TESTS" | xargs -n1 grep --color=always -iP -H -n
"$BC_CLASS_SEARCH_PATTERN"

2018-02-21 96

https://github.com/OXID-eSales/oxideshop_ce/blob/v6.0.0/source/Core/Autoload/BackwardsCompatibilityClassMap.php#L12-L572
https://github.com/OXID-eSales/oxideshop_ce/blob/v6.0.0/source/Core/Autoload/BackwardsCompatibilityClassMap.php#L12-L572
https://github.com/OXID-eSales/oxideshop_ce/blob/v6.0.0/source/Core/Autoload/BackwardsCompatibilityClassMap.php#L12-L572
https://github.com/OXID-eSales/oxideshop_ce/blob/v6.0.0/source/Core/Autoload/BackwardsCompatibilityClassMap.php#L12-L572
https://github.com/OXID-eSales/oxideshop_ce/blob/v6.0.0/source/Core/Autoload/BackwardsCompatibilityClassMap.php#L12-L572
https://github.com/OXID-eSales/oxideshop_ce/blob/v6.0.0/source/Core/Autoload/BackwardsCompatibilityClassMap.php#L12-L572
https://github.com/OXID-eSales/oxideshop_ce/blob/v6.0.0/source/Core/Autoload/BackwardsCompatibilityClassMap.php#L12-L572
https://github.com/OXID-eSales/oxideshop_ce/blob/v6.0.0/source/Core/Autoload/BackwardsCompatibilityClassMap.php#L12-L572
https://github.com/OXID-eSales/oxideshop_ce/blob/v6.0.0/source/Core/Autoload/BackwardsCompatibilityClassMap.php#L12-L572
https://github.com/OXID-eSales/oxideshop_ce/blob/v6.0.0/source/Core/Autoload/BackwardsCompatibilityClassMap.php#L12-L572
https://github.com/OXID-eSales/oxideshop_ce/blob/v6.0.0/source/Core/Autoload/BackwardsCompatibilityClassMap.php#L12-L572

replace into.

8. INSTALLABLE VIA COMPOSER

In order to pass this porting criteria one has to update given module to be compatible with

composer. Please consider following a document on the subject: How to make OXID

eShop module installable via composer?

9. INTRODUCE A NAMESPACE IN YOUR MODULE

In order to pass this porting criteria one has to register a namespace in composer.json file
as it is also mentioned in the previous guide of “How to make OXID eShop module

installable via composer?”. In addition to this few modifications to metadata.php file has to
be applied as well. All the necessary modifications are described in sub-topics written

below.

METADATA VERSION

The sMetadataVersion variable in metadata.php file has to be changed to have at least

version 2.0 which indicates the usage of namespaced classes. In order to quickly verify

the version, consider using the following command:

In case of a negative result, please update the value of sMetadataVersion variable.

FILES FIELD

Starting from metadata version 2.0 the files section is obsolete due to the fact that

composer takes care of autoloading for these files through registered namespace.

Consider looking at the list of files which were included in the old version of given module:

Make sure each of these listed files are now under their own namespace. Please use the

information provided in the PHP manual in order to be able to register a class under the

namespace. As an end result there should not be any entries left for the files section in the

new module, consider using the following command to quickly double check the status

(should be empty):

grep -i -P "sMetadataVersion\s*?=\s*?'2\.0'"
"$ESHOP_PATH/source/modules/$MODULE_NAME/metadata.php"

grep "'files'" "$ESHOP_PATH/source/modules/$OLD_MODULE_NAME/metadata.php"

2018-02-21 97

https://getcomposer.org/
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
http://php.net/manual/en/language.namespaces.rationale.php
http://php.net/manual/en/language.namespaces.rationale.php
http://php.net/manual/en/language.namespaces.rationale.php
http://php.net/manual/en/language.namespaces.rationale.php
http://php.net/manual/en/language.namespaces.rationale.php
http://php.net/manual/en/language.namespaces.rationale.php
http://php.net/manual/en/language.namespaces.rationale.php
http://php.net/manual/en/language.namespaces.rationale.php
http://php.net/manual/en/language.namespaces.rationale.php
http://php.net/manual/en/language.namespaces.rationale.php

EXTEND FIELD

Starting from metadata version 2.0 the extend section expects UNS OXID eShop classes

as keys and module namespaced classes as values (Previously `BC classes`_ were used

as keys and file path as value). To list all extend entries from an old module consider

using the following command:

Make sure each of these used module classes are now registered under their own

namespace. Please use the information provided in the PHP manual in order to be able to
register a class under the namespace. Consider using the following commands in order to
visually compare changes:

To get a better understanding consider this visual example from oxid-esales/paypal-

module of above mentioned changes:

Using older metadata:

Using new metadata:

CONTROLLERS FIELD

As it’s described in V2 metadata details please make sure that all keys in controllers field

are written in lowercase:

grep "'files'" "$ESHOP_PATH/source/modules/$MODULE_NAME/metadata.php"

grep -Pzo '(?s)extend.*?\)' "$ESHOP_PATH/source/modules/$OLD_MODULE_NAME/metadata.php"

grep -Pzo '(?s)extend.*?\)' "$ESHOP_PATH/source/modules/$OLD_MODULE_NAME/metadata.php"
grep -Pzo '(?s)extend.*?[\)\]]' "$ESHOP_PATH/source/modules/$MODULE_NAME/metadata.php"

'order' => 'oe/oepaypal/controllers/oepaypalorder',
'oxorder' => 'oe/oepaypal/models/oepaypaloxorder',

\OxidEsales\Eshop\Application\Controller\OrderController::class =>
\OxidEsales\PayPalModule\Controller\OrderController::class,
\OxidEsales\Eshop\Application\Model\Order::class =>
\OxidEsales\PayPalModule\Model\Order::class,

2018-02-21 98

http://php.net/manual/en/language.namespaces.rationale.php
http://php.net/manual/en/language.namespaces.rationale.php
http://php.net/manual/en/language.namespaces.rationale.php
http://php.net/manual/en/language.namespaces.rationale.php
http://php.net/manual/en/language.namespaces.rationale.php
http://php.net/manual/en/language.namespaces.rationale.php
http://php.net/manual/en/language.namespaces.rationale.php
http://php.net/manual/en/language.namespaces.rationale.php
http://php.net/manual/en/language.namespaces.rationale.php
http://php.net/manual/en/language.namespaces.rationale.php
http://php.net/manual/en/language.namespaces.rationale.php
https://github.com/OXID-eSales/paypal
https://github.com/OXID-eSales/paypal

NAMESPACED CLASSES

At this step it’s still quite possible that few of module classes might not have been

namespaced yet. In order to make sure that this is indeed not the case consider using the

following commands to verify number of classes (Old classes vs namespace entries,

ideally they should match):

If for some reason test classes should not be included, consider using the following:

Note: It’s quite possible that due to refactoring or addition of new classes the numbers

above will not match.

SHORT ARRAY SYNTAX

Starting with new OXID eShop version the lowest supported PHP version is 5.6, which

means there is no reason to keep the old long syntax of arrays anymore. Consider using

the following command to quickly check if there are any old long array syntax usages left

(ideally the result should be empty):

As a reminder please see quick visual difference between old and new notation of arrays.

DOCUMENTATION

List of documentation which explores module porting process with more details:

Steps to port a module for the OXID eShop version 6.0

Quick guide to port a module for OXID eShop version 6.0

Guide to make a full port of a module for OXID eShop version 6.0

How to make OXID eShop module installable via composer?

grep -Pzo '(?s)controllers.*?[\)\]]' "$ESHOP_PATH/source/modules/$MODULE_NAME/metadata.php"

grep --include *.php -r '^class' "$ESHOP_PATH/source/modules/$OLD_MODULE_NAME" | wc -l
grep --include *.php -r '^namespace' "$ESHOP_PATH/source/modules/$MODULE_NAME" | wc -l

grep --include *.php --exclude *Test.php -r '^class'
"$ESHOP_PATH/source/modules/$OLD_MODULE_NAME" | wc -l
grep --include *.php --exclude *Test.php -r '^namespace'
"$ESHOP_PATH/source/modules/$MODULE_NAME" | wc -l

grep -i 'array' "$ESHOP_PATH/source/modules/$MODULE_NAME/metadata.php" | wc -l

2018-02-21 99

http://php.net/manual/en/language.types.array.php
http://php.net/manual/en/language.types.array.php
http://php.net/manual/en/language.types.array.php
http://php.net/manual/en/language.types.array.php
http://php.net/manual/en/language.types.array.php
http://php.net/manual/en/language.types.array.php
http://php.net/manual/en/language.types.array.php
http://php.net/manual/en/language.types.array.php
http://php.net/manual/en/language.types.array.php
http://php.net/manual/en/language.types.array.php
http://php.net/manual/en/language.types.array.php
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-quickly-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-fully-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-fully-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-fully-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-fully-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-fully-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-fully-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-fully-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-fully-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-fully-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-fully-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-fully-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-fully-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-fully-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-fully-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-fully-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-fully-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-fully-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-fully-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-fully-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-fully-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-fully-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-fully-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-fully-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-fully-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-fully-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-fully-port-a-module-to-oxid-eshop-6-0.html
https://oxidforge.org/en/how-to-fully-port-a-module-to-oxid-eshop-6-0.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html
https://docs.oxid-esales.com/developer/en/6.0/modules/module_via_composer.html

Next

V2 metadata details

Module structure

Previous

© Copyright 2017 - 2018, OXID eSales AG.

2018-02-21 100

https://docs.oxid-esales.com/developer/en/6.0/modules/developing/structure.html
https://docs.oxid-esales.com/developer/en/6.0/modules/developing/structure.html
https://docs.oxid-esales.com/developer/en/6.0/modules/developing/structure.html

Edit on GitHub

Next

Docs » Module resources » Good practices

GOOD PRACTICES

Several good practices one could use in order to have module which is:

Easier to maintain

Easier to test

Easier to port to the new Shop version

Extend OXID eShop Class

Previous

© Copyright 2017 - 2018, OXID eSales AG.

OXID eShop developer documentation

2018-02-21 101

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/good_practices/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/good_practices/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/good_practices/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/good_practices/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/good_practices/index.rst

Edit on GitHubDocs » Module resources » Good practices » Extend OXID eShop Class

EXTEND OXID ESHOP CLASS

OXID eShop allows to chain extend Shop classes. This builds all modules in a single chain

allowing them to:

Hook to events when methods are being used

Change what is returned by the method

Get the results from a method

This is a very powerful mechanism which gives a lot of flexibility to module writers. This

comes with a price that module classes which extends Shop classes are harder to
maintain as they:

Extends (contains) shop logic

Could be influenced by other modules

Therefore best practice would be to avoid all logic in these classes and use them only to
extend to a Shop method. All logic then would be placed to a separate module class. In
such a case an integration test would be written for a class which extends Shop. This test

would assure that parameters get from Shop are such as expected and works in a project

even when other modules being activated. Module class with real logic would be tested

with regular unit/integration/acceptance tests.

Example of a module class which extends OXID eShop class

This is simplified variant to show that custom logic of the module could be executed every

time when the OXID eShop method is being called.

/**
 * @see \OxidEsales\Eshop\Application\Model\Basket

OXID eShop developer documentation

2018-02-21 102

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/good_practices/extend_shop_class.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/good_practices/extend_shop_class.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/good_practices/extend_shop_class.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/good_practices/extend_shop_class.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/good_practices/extend_shop_class.rst

Example of integration/acceptance test

This test assures that all functionality of the module works as expected within a project.

This test has to be run:

Within the OXID eShop

With all relevant modules activated (functionality of Testing Library)

OXID eShop class is created with function oxNew. This assures that extension chain is
build form all relevant modules. At the end assertion is done that module functionality

works as expected. This method will break if:

 */
class Basket extends Basket_parent
{
 /**
 * Method overrides eShop method and adds logging functionality.
 *
 * @param string $productID
 * @param int $amount
 * @param null|array $sel
 * @param null|array $persParam
 * @param bool|false $shouldOverride
 * @param bool|false $isBundle
 * @param null|string $oldBasketItemId
 *
 * @see \OxidEsales\Eshop\Application\Model\Basket::addToBasket()
 *
 * @return BasketItem|null
 */
 public function addToBasket(
 $productID,
 $amount,
 $sel = null,
 $persParam = null,
 $shouldOverride = false,
 $isBundle = false,
 $oldBasketItemId = null
) {
 $basketItemLogger = new BasketItemLogger($this->getConfig()->getLogsDir());
 $basketItemLogger->logItemToBasket($productID);

 return parent::addToBasket(
 $productID,
 $amount,
 $sel,
 $persParam,
 $shouldOverride,
 $isBundle,
 $oldBasketItemId
);
 }
}

class BasketItemLogger { ... }

2018-02-21 103

Next

OXID eShop introduces backward incompatibility with the module.

Other module within a compilation change OXID eShop in incompatible way.

Important

In case OXID eShop class is extended via module class and it should be used somewhere

in the code, objects must be created not from module class, but from OXID eShop class.

Use case: module class \OxidEsales\LoggerDemo\Model\Basket extends OXID

eShop class \OxidEsales\Eshop\Application\Model\Basket, new object must be created

from \OxidEsales\Eshop\Application\Model\Basket.

Good example: $basket =

oxNew(\OxidEsales\Eshop\Application\Model\Basket::class);

Bad example: $basket = oxNew(\OxidEsales\LoggerDemo\Model\Basket::class);

EXAMPLE MODULE

https://github.com/OXID-eSales/logger-demo-module

https://github.com/OXID-eSales/event_logger_demo

Previous

© Copyright 2017 - 2018, OXID eSales AG.

public function testLoggingWhenCustomerAddsToBasket()
{
 $rootPath = $this->mockFileSystemForShop();

 $productId = 'testArticleId';

 /**
 Create Shop class which uses module class.
 Use oxNew() to build whole chain to assure that module work
 in a project - when other modules are activated.
 **/
 $basketComponent = oxNew(\OxidEsales\Eshop\Application\Component\BasketComponent::class);
 $this->setRequestParameter('aid', $productId);
 $basketComponent->tobasket();

 $fileContents = $this->getLogFileContent($rootPath);

 $this->assertLogContentCorrect($fileContents, $productId);
}

2018-02-21 104

https://github.com/OXID-eSales/logger-demo-module
https://github.com/OXID-eSales/event_logger_demo

Edit on GitHub

Next

Docs » Module resources » Module Certification

MODULE CERTIFICATION

This section of the developer documentation is intended for developers who want to create

high-quality extensions for OXID eShop. The following pages provide information on

software quality and testing and are, in particular, dedicated to the development of

extensions that stick to the OXID standards for developers and to the preparation for the

Module Certification process.

Or course, these Module Certification Guidelines can and should be used by anyone who

want to write high-quality extensions for OXID eShop.

Software tests

Software quality

Inter-module compatibility

Documentation

Terms, conditions and checklist

Previous

© Copyright 2017 - 2018, OXID eSales AG.

OXID eShop developer documentation

2018-02-21 105

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/certification/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/certification/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/certification/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/certification/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/certification/index.rst
https://en.oxid-esales.com/en/products/facts/module-certification.html
https://en.oxid-esales.com/en/products/facts/module-certification.html
https://en.oxid-esales.com/en/products/facts/module-certification.html
https://en.oxid-esales.com/en/products/facts/module-certification.html
https://en.oxid-esales.com/en/products/facts/module-certification.html

Edit on GitHubDocs » Module resources » Module Certification » Software tests

SOFTWARE TESTS

TESTING STANDARDS

EDGE CASES

You should test methods for proper input handling as well as for failure cases and for edge

cases.

What happens on correct input?

What happens on incorrect input?

What happens in edge cases?

ATOMIC TESTS

Each method should be tested on its own. There shouldn’t be any dependencies between

the tests. If there are, use stubs and dependency injection. See the PHPUnit Manual: Test

Doubles.

TEST CREATION CONVENTIONS

TEST CREATION FOR ALL MODULE FILES

Tests must be written for all module files (frontend and admin controllers, components,

models). Only third party files can be excluded from testing (for example some API, since

wrappers exist).

ONE TEST CLASS PER MODULE CLASS

There should be a test class for each module class and each class should be stored in a
separate file.

OXID eShop developer documentation

2018-02-21 106

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/certification/software_tests.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/certification/software_tests.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/certification/software_tests.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/certification/software_tests.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/certification/software_tests.rst

ASSISTIVE CLASSES FOR TESTING

Helper classes must be stored in a separate directory or managed by Composer.

TEST CLASSES

The classes should be declared as follows:

Test methods should be declared using test as a prefix with the function that shall be

tested. E.g. a method named

contains the test for a method named someFunctionName() in the tested class. By sticking

to that schema it can easily be determined which test method is responsible for testing a
certain method of a module’s class.

AN EXAMPLE

WRITE AT LEAST ONE TEST PER METHOD

For each method there should be at least one test in the test method respectively. Hint:

The amount of tests for a method should be as high as the NPath complexity. NPath

complexity=7 results in 7 tests. Tests must be written only for public methods. All

protected and private methods must be tested through public methods.

CODE COVERAGE > 90 PERCENT

The code coverage has to be greater than 90%. This refers to the code coverage for Lines

of Code (LOC).

namespace VendorNamespace\ModuleName\Tests\Unit;

class [Class name]Test extends \OxidEsales\TestingLibrary\UnitTestCase
{

}

public function testSomeFunctionName()

namespace OxidProfessionalServices\ModuleGenerator\Tests\Unit;

class ModuleGeneratorFileSystemTest extends \OxidEsales\TestingLibrary\UnitTestCase
{
}

2018-02-21 107

MINIMAL DISTURBANCE OF ESHOP TESTS

Your unit tests should interfere as little as possible with the shop tests. If you run all tests

at once (e.g. eShop unit tests and module unit tests afterwards), no shop test should fail.

Only shop tests of methods that are overloaded by your module(s) may fail, when a change

of the return values was intended.

DIRECTORY STRUCTURE

MODULE DIRECTORY STRUCTURE

The module structure basically must be like the example structure shown in the picture

below. The test folder must be a subdirectory in the module directory. Please stick to the

structure example given in modules/structure.

OXID TEST FOLDER USAGE

Sample tests can be found in the Module Certification Tools repository on GitHub

Use additional.inc.php to add additional includes, helpers or startup scripts. The required

libraries should be managed by Composer or, if not namespaced, located in the Libs

directory.

If you extend the OxidTestCase::setUp function, you should also call the parent method.

All demodata (SQL snippets, files needed for testing) must be stored in Tests/Unit/Testdata , for

example, if you need some SQL before tests, it is enough to call the function:

RUNNING TESTS, CREATING AND READING REPORTS

RUNNING TESTS

See README file of the testing library

GENERATING CODE COVERAGE REPORT

In order to run all the tests and generate the coverage report for the module, you need to
ensure that all directories and files which are not part of the module in particular (e.g. 3rd

party libraries) are excluded from testing (see Test creation). In order to start generating

the code coverage report, run vendor/bin/runtests-coverage. After the script

is finished, you will find a directory named report inside the module’s tests folder

(yourmodule/tests/report) which contains the code coverage files.

$DbHandler = new DatabaseHandler();
$DbHandler->import(TESTS_DIRECTORY."Unit/Testdata/DemoDataFile.sql");

2018-02-21 108

https://github.com/OXID-eSales/module_certification_tools
https://github.com/OXID-eSales/module_certification_tools
https://github.com/OXID-eSales/module_certification_tools
https://github.com/OXID-eSales/module_certification_tools
https://github.com/OXID-eSales/module_certification_tools
https://github.com/OXID-eSales/module_certification_tools
https://github.com/OXID-eSales/module_certification_tools
https://github.com/OXID-eSales/module_certification_tools
https://github.com/OXID-eSales/module_certification_tools
https://github.com/OXID-eSales/module_certification_tools
https://github.com/OXID-eSales/module_certification_tools
https://github.com/OXID-eSales/testing_library#running-tests
https://github.com/OXID-eSales/testing_library#running-tests
https://github.com/OXID-eSales/testing_library#running-tests
https://github.com/OXID-eSales/testing_library#running-tests
https://github.com/OXID-eSales/testing_library#running-tests
https://github.com/OXID-eSales/testing_library#running-tests
https://github.com/OXID-eSales/testing_library#running-tests
https://github.com/OXID-eSales/testing_library#running-tests
https://github.com/OXID-eSales/testing_library#running-tests
https://github.com/OXID-eSales/testing_library#running-tests
https://github.com/OXID-eSales/testing_library#running-tests

Next

INTERPRETING THE CODE METRICS

Run vendor/bin/runmetrics to generate the metrics information. Two files, metrics.xml and

metrics.txt will be generated. The information needed for certification is stored in the file

metrics.txt .

As a result you will get the total average (“AVG”) over all classes and the averages for each

class. No class average may be higher than the values listed below in the chapter “Software

quality”.

RUN MODULE TESTS BEFORE APPLYING FOR CERTIFICATION

Before sending module for certification to OXID eSales first follow these steps:

Generate a clean setup of the OXVM (with testing tools)

Follow the instructions (see Readme file of the OXVM) to install the desired shop version and

edition. A clean instance will be created automatically on provision (by vagrant).

Install your module following the instructions delivered with the module.

Run all shop and module tests (runtests , runtests-coverage , runmetrics).

Check whether all tests are working and do not fail (prepare explanations for failing shop

tests).

Previous

© Copyright 2017 - 2018, OXID eSales AG.

2018-02-21 109

Edit on GitHubDocs » Module resources » Module Certification » Software quality

SOFTWARE QUALITY

BASICS

NO GLOBALS

Do not use global variables like

In order to receive their represented values, use the methods provided by the shop

framework.

NO GLOBAL FUNCTIONS

Avoid creating new global functions (e.g. in the modules/functions.php file).

NO BUSINESS LOGIC IN SMARTY FUNCTIONS

Use smarty only for design purposes. Business logic belongs to the PHP level.

PHP CODE

Object-oriented programming is highly preferred. Your code should be compatible with the

PHP versions described in the system requirements.

OXID STANDARDS

MODULE STRUCTURE

$_POST
$_GET
$_SERVER
// etc.

OXID eShop developer documentation

2018-02-21 110

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/certification/software_quality.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/certification/software_quality.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/certification/software_quality.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/certification/software_quality.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/certification/software_quality.rst
https://oxidforge.org/en/oxid-eshop-v6-0-0-beta-system-requirements.html
https://oxidforge.org/en/oxid-eshop-v6-0-0-beta-system-requirements.html
https://oxidforge.org/en/oxid-eshop-v6-0-0-beta-system-requirements.html

The module’s directory structure should be as described in modules/structure.

MODULE CONSTITUENTS

All modifications introduced by a module must be part of the module directory. This

applies for theme extensions, such as blocks, new templates, as well as language files and

resources. A module must not come with manual modification instructions for templates or

language files of the core product or 3rd party modules.

CLASS DESIGN

BASE EXTENSIONS

Your classes should, in general, be – directly or indirectly – derived from the Base

(\OxidEsales\Eshop\Core\Base) class of the eShop framework. There are some exception

where Base does not have to be used:

in classes where lazy loading is not needed (not directly working with database)

new classes intended for working with the file system

But you must inherit from Base ,

when lazy loading is needed (for example like original shop file Article)

whenever you want to be able to access the shop’s configuration

GETTERS AND SETTERS

Accessing public variables of the class should be implemented using getter and setter

methods.

DO NOT USE $THIS->_AVIEWDATA

In the shop’s frontend templates, and unless you are not working with admin templates, do

not use

Instead, use

$this->_aViewData['someVar'] = 'some Value';

$this->setViewData('someVar', 'some Value');

2018-02-21 111

In general, keep in mind that setters and getters should be used whenever values are

assigned to protected variables.

EXCEPTION HANDLING

Create your own classes for exception handling and therefor use StandardException :

MAXIMUM LENGTH OF METHODS < 80 LINES

The number of lines of a method should not be higher than 80. The best practice is to stich

with values below 40. Modules with more than 120 lines of code in a method cannot be

certified.

COMPLEXITY

MAXIMUM NPATH COMPLEXITY < 200

The NPath complexity is the number of possible execution paths through a method. Each

control structure, e.g.

is taken into account also the nested and multipart boolean expressions. The NPath

complexity should be lower than 200. Modules with values above 500 cannot be certified.

MAXIMUM CYCLOMATIC COMPLEXITY = 4

The Cyclomatic Complexity is measured by the number of statements of

use \OxidEsales\Eshop\Core\Exception\StandardException

if
elseif
for
while
case

if
while
do
for
?:
catch
switch
case

2018-02-21 112

as well as operators like

in the body of a constructor, method, static initializer, or instance initializer. It is a measure

of the minimum number of possible paths through the source and therefor the number of

required tests. In general, 1-4 is considered good, 5-7 ok, 8-10 means “consider re-

factoring”, and 11 and higher tells you “re-factor now!”. A hard limit for the module

certification process is a Cyclomatic Complexity of 8.

MAXIMUM C.R.A.P. INDEX < 30

The Change Risk Analysis and Predictions (C.R.A.P.) index of a function or method uses

Cyclomatic Complexity and Code Coverage from automated tests to help estimate the

effort and risk associated with maintaining legacy code. Modules with a CRAP index above

30 will not be accepted in the certification process.

EXTENDING VIEWS AND FRONTEND

BLOCKS

Use block definitions in the templates. This is not an obligation. The naming convention for

new blocks is: [vendor]_[module]_[blockname] . In the templates, use blocks like that:

All blocks information should be stored into views/blocks directory:

For example, if a block is intended for a certain file of a theme, like

Application/views/[theme name]/tpl/page/details/details.tpl , inside the module directory, the

block file should be located in views/blocks/originalTemplateName_blockname.tpl .

When adding contents for blocks in the admin interface, blocks should be located in paths

like views/blocks/admin/originalTemplateName_blockname.tpl .

Blocks sould be used whenever the shop’s functionality is extended to the frontend side

and a requested function or method would not be available as long as the module is
disabled. Using blocks allows you to move function calls into small snippet files for the

&&
||
and
or
xor

[{block name="thevendor_themodule_theblock"}][{/block}]

2018-02-21 113

frontend that are only included when the modules is set active. Therefore, using blocks can

be considered a quality feature of a module.

MODULE TEMPLATES

All new templates must be registered in metadata.php and should use naming convention:

[vendor]_[module]_[templateName]

All templates should be stored in the same structure like shop templates are.

For example:
views/ - all frontend templates views/admin/ - all admin templates

USING JAVASCRIPT AND INCLUDING .JS FILES

JavaScript files should be stored into:

out/src/js/libs – if needs to define some additional JS libraries

out/src/js/widgets – all newly created widgets

Naming convention for new widgets: [vendor]_[module]_[widgetName].js

Important

All Javascript code must be in files in the widgets folder. Javascript code is not allowed

directly in the template. In the template you are only allowed to do the assignment for

widgets and do includes for the Javascript files you need.

In order to include Javascript files in frontend, use:

And for output:

Assignment of a DOM element for a widget:

[{oxscript include=$oViewConf->getModuleUrl("[MODULE ID]", "out/src/js/[path where the needed
file is] ") priority=10}]

[{oxscript}]

[{oxscript add="$('dom element').neededWidget();" priority=10}]

2018-02-21 114

Next

In this way Javascript files will be included correctly within the template.

USING CSS AND INCLUDING .CSS FILES

CSS files should be stored in: out/src/css/<filename>

CSS file naming convention is: [vendor]_[module]_[css file name].css

To include new CSS file from module needs to use:

And for output:

Important

All needed styles must be stored into CSS file and must not be assigned directly in
template.

LANGUAGE FILES AND TEMPLATES

Individual language files and templates must be inside the module directory.

DATABASE ACCESS

DATABASE ACCESS COMPATIBILITY

Database access should be master-slave compatible. For details, see Database:

Master/Slave.

Previous

© Copyright 2017 - 2018, OXID eSales AG.

[{oxstyle include=$oViewConf->getModuleUrl("module id", "out/src/css/{FileName}.css")}]

[{oxstyle}]

2018-02-21 115

https://docs.oxid-esales.com/developer/en/6.0/modules/using_database.html#modules-database-master-slave
https://docs.oxid-esales.com/developer/en/6.0/modules/using_database.html#modules-database-master-slave

Edit on GitHubDocs » Module resources » Module Certification » Inter-module compatibility

INTER-MODULE COMPATIBILITY

VENDOR ACRONYMS AND PREFIXES

VENDOR PREFIXES

A prefix and a vendor namespace should be used consistently, and they should be

registered at OXID eSales to prevent use by others. Use your prefix for your:

1. database tables

2. additional fields

3. config parameters

4. language constants

NAMESPACES

Also, your namespace (with the namespace of your module) should be used inside all of

your classes. An example from the PayPal module:

EXTENSIONS FOR EXISTING METHODS

PARENT CALLS

When writing extensions for methods that do variable assignments or execute other calls,

be sure to add a parent call. This is an example from the oepaypal module class

OrderController which is an extension for the shop’s class with the namespace

namespace OxidEsales\PayPalModule\Controller;

class OrderController extends OrderController_parent
{
 // ...

OXID eShop developer documentation

2018-02-21 116

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/certification/inter_module_compatibility.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/certification/inter_module_compatibility.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/certification/inter_module_compatibility.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/certification/inter_module_compatibility.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/certification/inter_module_compatibility.rst
https://oxidforge.org/en/extension-acronyms
https://oxidforge.org/en/extension-acronyms
https://oxidforge.org/en/extension-acronyms
https://oxidforge.org/en/extension-acronyms
https://oxidforge.org/en/extension-acronyms
https://oxidforge.org/en/extension-acronyms
https://oxidforge.org/en/extension-acronyms

Next

\OxidEsales\Eshop\Application\Controller\OrderController .

METHOD VISIBILITY

Do not change the visibility of methods that are extended. Visibilities can be public ,

protected or private . If you want to extend an original method, do not change your new

method’s visibility from protected to public or from private to protected .

USE OXNEW()

For creating objects, always use the oxNew() function in order to have the module chain

(and all of its methods) available:

Previous

© Copyright 2017 - 2018, OXID eSales AG.

/**
 * Returns PayPal user
 *
 * @return \OxidEsales\Eshop\Application\Model\User
 */
public function getUser()
{
 $user = parent::getUser();

 $userId = $this->getSession()->getVariable("oepaypal-userId");
 if ($this->isPayPal() && $userId) {
 $payPalUser = oxNew(\OxidEsales\Eshop\Application\Model\User::class);
 if ($payPalUser->load($userId)) {
 $user = $payPalUser;
 }
 }

 return $user;
}

$Article = oxNew('Article');

2018-02-21 117

Edit on GitHubDocs » Module resources » Module Certification » Documentation

DOCUMENTATION

DOCUMENTATION RESOURCES

README.MD

Your module directory should contain a README.md file. We recommend using the

markdown format. The file should provide basic information about the extension, e.g.:

Title – the name of the module

Author – the author/company of the module

Prefix – the prefix you use

Version – version of the module which is described

Link – a link to the homepage of the author/company

Mail – email for contact

Description – a short description of the function of the module

Installation – a detailed description how to install the module

Modules – which other modules are used

Resources – other resources

Here is a (shortened) example:

The ... extension for OXID eShop 6
==================================

![Alt text for an image](an-image.jpg)

List of features

* List item A
* List item B
* List item C

Setup

OXID eShop developer documentation

2018-02-21 118

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/certification/documentation.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/certification/documentation.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/certification/documentation.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/certification/documentation.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/certification/documentation.rst

CHANGELOG.MD

The file CHANGELOG.md should contain a description of the changes that were added for each

release. The latest releases should be on top of that file.

A simple example:

PHPDOC

You can provide a HTML document that contains the PHPdoc from the code’s comments.

See also PHP comments.

DOCUMENTATION DIRECTORY

You can provide additional documentation materials inside a documentation directory

(within the directory structore of the module), e.g. in PDF files.

PHP COMMENTS

Add comments to your code. Each class, variable and method should have a comment. A
comment should give additional information and not only repeat the name. See the

following example:

For installation instructions please see...

Module installation via Composer

Install this module...

1.0.1

* Fixed a bug that prevented...

1.0.0

* Completed all features, tested and stable.

<?php
/**
* Cupboard
*
* @package Furniture
* @version $Revision$
* @author
* @copyright Copyright (C) 2003-2017 Somecompany . All rights reserved.
* @license http://www.gnu.org/licenses/gpl-3.0.txt GPL

2018-02-21 119

Next

GET RID OF OLD STANDARDS

NO COPY_THIS DIRECTORY

As the modules must be installable via Composer, an additional directory structure would

make it complicated to install them. Your module package should have the vendor

directory on top.

NO CHANGED_FULL DIRECTORY

This directory is no longer needed.

NO INSTALL.SQL

Unlike in previous shop versions, the database setup should not happen with a SQL file,

but rather using an installer with an onActivate() method as well as configurations in the

settings array on the metadata.php file.

Previous

* @extend Base
*/
class Cupboard extends Cupboard_parent
{
/**
* Number of cups in the cupboard. Declared in units
*
* @var int
*/
protected $numberOfCups;
/**
* Take a cup from cupboard
*
* Reduces the amount of cups by the specified amount. If
* there are not enough cups left the cupboard is emptied. The actual amount
* of cups removed from the cupboard will be returned.
*
* @extend drink
* @param int $amount
* @return int
*/
public function take($amount)
{
 // inline comment
 $this->numberOfCups -= $amount = max($this->numberOfCups, $amount);
 return $amount;
}

2018-02-21 120

Edit on GitHub

Docs » Module resources » Module Certification » Terms, conditions and checklist

TERMS, CONDITIONS AND CHECKLIST

GENERAL

The module certification by OXID eSales will be done for the latest version of OXID eShop.

An existing certification is valid for the patch versions of a certified module (e.g. 6.0.1, 6.0.2

are patches of 6.0).

Within the period of 24 months, one re-certification is included. (Independent of OXID

provided updates). Further re-certification requests within the time period of 24 months will

be charged additionally.

The module must be re-certified when a minor version of OXID eShop is released.

When doing the certification, OXID will not distinguish between OXID eShop editions

(Community, Professional, Enterprise, B2B).

CHECKLIST

This following overview contains an overview of all conditions for developing certifiable

eShop modules for OXID eShop versions 6.0 and higher. Details to the single issues will be

communicated in the offered trainings and are noted in the training materials respectively.

SOFTWARE TESTS

One test class per module class

Class MODULKLASSETest extends UnitTestCase

At least 1 test per method

Demonstrative & destructive tests

NO assertTrue(true)

Atomic tests

MODULNAMETest.php for automatic execution of all tests

Code coverage > 90%; classes that are pure data containers don’t include any logic (only

OXID eShop developer documentation

2018-02-21 122

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/certification/terms_conditions_checklist.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/certification/terms_conditions_checklist.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/certification/terms_conditions_checklist.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/certification/terms_conditions_checklist.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/modules/certification/terms_conditions_checklist.rst

getters and setters), can be excluded from test coverage; code coverage includes non-public

methods

Minimal disturbance of the eShop tests

SOFTWARE QUALITY

use the Composer blacklist-filter for Composer modules

No globals

No global functions

No business logic in smarty functions

PHP5/7 Code

Extensions of Base

Getters & Setters

Usage of StandardException

Maximum length of methods < 80 lines (best practice: < 40 lines)

Maximum NPath complexity < 200

Maximum cyclomatic complexity = 4

Maximum C.R.A.P. index < 30

Template extensions using blocks

Individual language files and templates must be inside the module directory

Database access should be master-slave compatible (only relevant for OXID eShop

Enterprise Edition)

INTER-MODULE COMPATIBILITY

prefix before database field names

prefix before table names

prefix before config parameters

prefix before language constants

::parent call

oxNew

Visibility of methods: don’t change the extended methods visibility. Visibility is public,

protected or private. If you want to extend an original method, don’t change your new

methods visibility from protected to public and from private to protected!

DOCUMENTATION

Readme.md

Changelog.md

PHPDoc

PHP comments

2018-02-21 123

Next

Additional documentation materials in a dedicated directory

PACKAGING

Language files,

templates,

block files are inside the module directory

GENERAL TERMS AND CONDITIONS

The module can be certified for the latest version of OXID eShop.

Patch versions of the module do not change its features.

The tests can be executed both on OXID eShop CE and EE.

Previous

© Copyright 2017 - 2018, OXID eSales AG.

2018-02-21 124

Edit on GitHub

Next

Docs » Theme resources

THEME RESOURCES

Theme Configuration

How to create a theme installable via composer?

Previous

© Copyright 2017 - 2018, OXID eSales AG.

OXID eShop developer documentation

2018-02-21 125

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/themes/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/themes/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/themes/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/themes/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/themes/index.rst

Edit on GitHub

Next

Docs » Theme resources » Theme Configuration

THEME CONFIGURATION

Possibility to configure theme was added with the pull request #381

Example how to change settings for already existing theme as it was done in the Flow

Theme

Previous

© Copyright 2017 - 2018, OXID eSales AG.

OXID eShop developer documentation

2018-02-21 126

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/themes/theme_configuration.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/themes/theme_configuration.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/themes/theme_configuration.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/themes/theme_configuration.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/themes/theme_configuration.rst
https://github.com/OXID-eSales/oxideshop_ce/pull/381
https://github.com/OXID-eSales/oxideshop_ce/pull/381
https://github.com/OXID-eSales/oxideshop_ce/pull/381
https://github.com/OXID-eSales/oxideshop_ce/pull/381
https://github.com/OXID-eSales/oxideshop_ce/pull/381
https://github.com/OXID-eSales/oxideshop_ce/pull/381
https://github.com/OXID-eSales/oxideshop_ce/pull/381
https://github.com/OXID-eSales/flow_theme/pull/31
https://github.com/OXID-eSales/flow_theme/pull/31
https://github.com/OXID-eSales/flow_theme/pull/31
https://github.com/OXID-eSales/flow_theme/pull/31
https://github.com/OXID-eSales/flow_theme/pull/31
https://github.com/OXID-eSales/flow_theme/pull/31
https://github.com/OXID-eSales/flow_theme/pull/31
https://github.com/OXID-eSales/flow_theme/pull/31
https://github.com/OXID-eSales/flow_theme/pull/31
https://github.com/OXID-eSales/flow_theme/pull/31
https://github.com/OXID-eSales/flow_theme/pull/31
https://github.com/OXID-eSales/flow_theme/pull/31
https://github.com/OXID-eSales/flow_theme/pull/31
https://github.com/OXID-eSales/flow_theme/pull/31

Edit on GitHubDocs » Theme resources » How to create a theme installable via composer?

HOW TO CREATE A THEME INSTALLABLE
VIA COMPOSER?

Themes are installed via Composer by using OXID eShop Composer Plugin.

In order to install theme correctly this plugin requires two fields to be described in theme

composer.json file:

type

extra

Flow theme example:

TYPE

Theme must have oxideshop-theme value defined as a type. This defines how the repository

should be treated by the installer.

{
 "name": "oxid-esales/flow-theme",
 "description": "This is Flow theme for OXID eShop.",
 "type": "oxideshop-theme",
 "keywords": ["oxid", "themes", "eShop"],
 "homepage": "https://www.oxid-esales.com/en/home.html",
 "license": [
 "GPL-3.0",
 "proprietary"
],
 "extra": {
 "oxideshop": {
 "target-directory": "flow",
 "assets-directory": "out/flow"
 }
}

OXID eShop developer documentation

2018-02-21 127

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/themes/theme_via_composer.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/themes/theme_via_composer.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/themes/theme_via_composer.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/themes/theme_via_composer.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/themes/theme_via_composer.rst
https://github.com/OXID-eSales/oxideshop_composer_plugin
https://github.com/OXID-eSales/oxideshop_composer_plugin
https://github.com/OXID-eSales/oxideshop_composer_plugin
https://github.com/OXID-eSales/oxideshop_composer_plugin
https://github.com/OXID-eSales/oxideshop_composer_plugin
https://github.com/OXID-eSales/oxideshop_composer_plugin
https://github.com/OXID-eSales/oxideshop_composer_plugin

Next

EXTRA: {OXIDESHOP}

TARGET-DIRECTORY

target-director value will be used to create a folder inside the Shop Application/views

directory. This folder will be used to place all files of the module.

ASSETS-DIRECTORY

Defines where public resources like css, js, images are placed inside the theme. The

plugin will copy those files to the Shop out directory.

Note

It is recommended to keep assets in out directory at a root level of the repository.

Previous

© Copyright 2017 - 2018, OXID eSales AG.

2018-02-21 128

Edit on GitHub

Next

Docs » Update

UPDATE

Default update (minor/patch) starting from version 6.0.0

Update from 6.0.0 beta or release candidates to 6.0.0 final

Major update from 4.10 / 5.3 to version 6.0.0

Previous

© Copyright 2017 - 2018, OXID eSales AG.

OXID eShop developer documentation

2018-02-21 129

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/index.rst

Edit on GitHub

Next

Docs » Update » Default update (minor/patch) starting from version 6.0.0

DEFAULT UPDATE (MINOR/PATCH)
STARTING FROM VERSION 6.0.0

The following steps need to be done when you want to update your compilation from any

6.x.x to a higher 6.x.x version. In case you need to do more we will explicitly name those

steps.

1. Please edit the oxid-esales/oxideshop-metapackage version requirement in your root

composer.json file by changing version to new compilation version you want to update

to, for example: “v6.0.1”.

2. For updating dependencies (necessary to update all libraries), in the project folder run:

3. For executing all necessary scripts to actually gather the new compilation, in the project

folder run:

4. For executing possible database migrations, in the project folder run:

Previous

composer update --no-plugins --no-scripts

composer update

vendor/bin/oe-eshop-db_migrate migrations:migrate

OXID eShop developer documentation

2018-02-21 130

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_6x_to_6y/update_default.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_6x_to_6y/update_default.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_6x_to_6y/update_default.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_6x_to_6y/update_default.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_6x_to_6y/update_default.rst

Edit on GitHubDocs » Update » Update from 6.0.0 beta or release candidates to 6.0.0 final

UPDATE FROM 6.0.0 BETA OR RELEASE
CANDIDATES TO 6.0.0 FINAL

PREPARE UPDATE OF OXID ESHOP COMPILATION TO
V6.0.0

Before updating OXID eShop compilation it is necessary to perform preparative steps for

the following modules, which are included in the compilation.

VISUAL CMS (ONLY PROFESSIONAL AND ENTERPRISE EDITION)

This module will be updated from version 2.0.0 to version 3.0.0 by the compilation update

1. Go to OXID eShop Admin â€£ Extensions â€£ Modules â€£ Visual CMS: click “deactivate”

2. In the file system of your HTTP server: backup the folder <project_root>source/modules/ddoe/visualcms

(optional)

3. In the file system of your HTTP server: remove the folder <project_root>"source/modules/ddoe/visualcms

4. Go to OXID eShop Admin â€£ Extensions â€£ Modules â€£ Installed Modules. You will see

the message ‘Invalid modules detected‘. ‘Do you want to delete all registered module

information and saved configurations?‘ Click ‘Yes‘

VisualCMS Widgets Migration

If you have created own shortcode classes by extending the class

ddvisualeditor_shortcode, change your shortcode class parent from

ddvisualeditor_shortcode to
\OxidEsales\VisualCmsModule\Application\Model\VisualEditorShortcode

OXID eShop developer documentation

2018-02-21 131

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_6x_to_6y/update_to 6.0.0.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_6x_to_6y/update_to 6.0.0.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_6x_to_6y/update_to 6.0.0.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_6x_to_6y/update_to 6.0.0.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_6x_to_6y/update_to 6.0.0.rst

Note: Do not add your shortcode classes themselves to any namespace.

WYSIWYG EDITOR + MEDIATHEK

This module will be updated from version 1.0.0 to version 2.0.0 by the compilation update

1. Go to OXID eShop Admin â€£ Extensions â€£ Modules â€£ WYSIWYG Editor + Mediathek:

click “deactivate”

2. In the file system of your HTTP server: backup the folder <project_root>source/modules/ddoe/wysiwyg

(optional)

3. In the file system of your HTTP server: remove the folder <project_root>source/modules/ddoe/wysiwyg

4. Go to OXID eShop Admin â€£ Extensions â€£ Modules â€£ Installed Modules. You will see

the message ‘Invalid modules detected‘. ‘Do you want to delete all registered module

information and saved configurations?‘ Click ‘Yes‘

UPDATE OF OXID ESHOP COMPILATION TO V6.0.0

1. Change the metapackage version

On your HTTP server, please edit <project_root>composer.json and update the metapackage

version to ^v6.0.0

Note: If you are using a different edition of OXID eShop the require string may differ.

2. Update requirements and plug-ins

In the CLI of your HTTP server run composer update without executing scripts or

plugins:

class your_shortcode extends
\OxidEsales\VisualCmsModule\Application\Model\VisualEditorShortcode
{
}

"require": {
 "oxid-esales/oxideshop-metapackage-ce": "^v6.0.0"
},

cd <project_root>
composer update --no-plugins --no-scripts

2018-02-21 132

Next

3. Execute script tasks and composer plug-in tasks

In the CLI of your HTTP server run by running composer update without

parameters:

4. Execute the OXID eShop migrations

In the CLI of your HTTP server run:

5. Re-activate specific modules

1. Go to OXID eShop Admin â€£ Extensions â€£ Modules â€£ Visual CMS: click “activate”

2. Go to OXID eShop Admin â€£ Extensions â€£ Modules â€£ WYSIWYG Editor + Mediathek:

click “activate”

Previous

© Copyright 2017 - 2018, OXID eSales AG.

cd <project_root>
composer update

cd <project_root>
vendor/bin/oe-eshop-db_migrate migrations:migrate

2018-02-21 133

Edit on GitHub

Next

Docs » Update » Major update from 4.10 / 5.3 to version 6.0.0

MAJOR UPDATE FROM 4.10 / 5.3 TO
VERSION 6.0.0

This guide acts on the assumption you have an already running OXID eShop 4.10 / 5.3 and

want to update it to OXID eShop 6.0.0. If you do not have the newest patch release of 4.10

/ 5.3, you should first update to this patch release. A helping approach regarding the

update is to deactivate all modules and then successively activate them after the update.

Read the documentation about all changes carefully. In some cases you have to take

actions, in some cases not. This depends on your OXID eShop, the modules, user data or

the theme you are using. Please also have a look at the source code documentation for

deprecated classes and methods. The update manual is divided into several chapters:

Files

Database

Modules

Theme

Removed features and new features

Previous

© Copyright 2017 - 2018, OXID eSales AG.

OXID eShop developer documentation

2018-02-21 134

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/index.rst
http://docu.oxid-esales.com/CE/sourcecodedocumentation/4.10.5/deprecated.html
http://docu.oxid-esales.com/CE/sourcecodedocumentation/4.10.5/deprecated.html
http://docu.oxid-esales.com/CE/sourcecodedocumentation/4.10.5/deprecated.html
http://docu.oxid-esales.com/CE/sourcecodedocumentation/4.10.5/deprecated.html
http://docu.oxid-esales.com/CE/sourcecodedocumentation/4.10.5/deprecated.html

Edit on GitHubDocs » Update » Major update from 4.10 / 5.3 to version 6.0.0 » Files

FILES

This section describes the steps to update the file structure from a OXID eShop version

4.10 / 5.3 to version 6. As there are many changes in the file structure, the approach for

the update is:

1. setup an OXID eShop 6 in parallel to your existing OXID eShop 4.10 / 5.3

2. copy the files described in the following sections from the OXID eShop 4.10 / 5.3 to the

OXID eShop 6

Please always pay attention to upper and lower case letters in file and directory names.

OWN SCRIPTS AND / OR CONFIGURATION

use UTF-8 encoding for all your scripts

if you made changes to .htaccess files in OXID eShop 4.10 / 5.3, port them to the equivalent

.htaccess files in OXID eShop 6. Pay attention to the fact that the .htaccess files in OXID eShop

6 are compatible with Apache 2.2 and 2.4 where OXID eShop 4.10 / 5.3 .htaccess file were

only compatible with Apache 2.2.

port your changes from config.inc.php of OXID eShop 4.10 / 5.3 to the config.inc.php file of

OXID eShop 6.

LANGUAGES

If you added a new language (additionally to the languages de and en) in OXID eShop

4.10 / 5.3, you have to port this language to OXID eShop 6 because many language

constants changed. In order to port the language, you have to either:

OXID eShop developer documentation

2018-02-21 135

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/files.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/files.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/files.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/files.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/files.rst

replace the language files by downloading an OXID eShop 6 compatible language pack. E.g.

from a 3rd party vendor or via translate.oxidforge.org.

or copy and update the language files manually.

Language related files reside in the following directories (also see OXIDprojects/languages

for a language pack example):

application/translations in OXID eShop 4.10 / 5.3 respectively Application/translations in OXID

eShop 6

application/views/admin in OXID eShop 4.10 / 5.3 respectively Application/views/admin in

OXID eShop 6

application/views/yourThemeName in OXID eShop 4.10 / 5.3 respectively Application/views/yourThemeName

in OXID eShop 6

out/yourThemeName in OXID eShop 4.10 / 5.3 and also out/yourThemeName in in OXID eShop 6

setup in OXID eShop 4.10 / 5.3 respectively Setup in OXID eShop 6

SMARTY PLUGINS

If you created own Smarty plugins in OXID eShop 4.10 / 5.3 and installed them by copying

them to the folder core/smarty/plugins , move them to the folder Core/Smarty/Plugins in OXID

eShop 6.

FOLDER OUT

Copy the files from the folders:

out/downloads

out/media

out/pictures (except out/pictures/wysiwygpro and out/pictures/generated)

to the equivalent folders in OXID eShop 6. For updating the images used in WYSIWYG Pro,

see this section

FOLDERS BIN / EXPORT / LOG / EXPORT

Copy the files from these directories. Do not copy the standard .htaccess files. If you

made changes to .htaccess files in OXID eShop 4.10 / 5.3, port them to the equivalent

.htaccess files in OXID eShop 6.

2018-02-21 136

http://translate.oxidforge.org/
https://github.com/OXIDprojects/languages

Next

MODULES

if you made changes to the file modules/composer.json in OXID eShop 4.10 / 5.3, port those

changes into the root composer.json file in OXID eShop 6 or into a modules composer.json file

if you made changes to the file modules/functions.php in OXID eShop 4.10 / 5.3, port those

changes into the equivalent file modules/functions.php file in OXID eShop 6

For updating a module itself, have a look at the Guideline for porting modules to OXID

eShop version 6.0

Previous

© Copyright 2017 - 2018, OXID eSales AG.

2018-02-21 137

Edit on GitHubDocs » Update » Major update from 4.10 / 5.3 to version 6.0.0 » Database

DATABASE

TABLES AND FIELDS

Before starting with the changes described in the following sections, you should make sure

that your OXID eShop 4.10 / 5.3 is running on utf-8 database tables. See here for migration

instructions. You should also take care that your own tables use UTF-8. There are also

exceptions from utf-8 in the OXID eShop database tables (e.g. the column OXID which is
latin1 in most tables). If you refer to those columns from your own tables, you also have to
use latin1.

In order to do update the database the update, you have to

1. Use your OXID eShop 4.10 / 5.3 database as a starting point for this update.

2. Execute the migrate_YOUR_EDITION_5_3_to_6_0.sql and migrate_YOUR_EDITION_5_3_to_6_0_cleanup.sql files

described in the following (have in mind, that cleanup file will delete data, so SQL file

contents must be checked before executing).

3. Run database migrations in OXID eShop 6 via the command:

4. Generate database views in OXID eShop 6 via the command:

For step 2, we provide update SQL scripts for each OXID eShop edition. We divided them

vendor/bin/oe-eshop-db_migrate migrations:migrate

vendor/bin/oe-eshop-db_views_generate

OXID eShop developer documentation

2018-02-21 138

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/database.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/database.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/database.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/database.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/database.rst
https://docs.oxid-esales.com/eshop/de/5.3/installation/update-installation/auf-utf-8-umstellen.html
https://docs.oxid-esales.com/eshop/de/5.3/installation/update-installation/auf-utf-8-umstellen.html
https://docs.oxid-esales.com/eshop/de/5.3/installation/update-installation/auf-utf-8-umstellen.html
https://docs.oxid-esales.com/eshop/de/5.3/installation/update-installation/auf-utf-8-umstellen.html
https://docs.oxid-esales.com/eshop/de/5.3/installation/update-installation/auf-utf-8-umstellen.html
https://docs.oxid-esales.com/eshop/de/5.3/installation/update-installation/auf-utf-8-umstellen.html
https://docs.oxid-esales.com/eshop/de/5.3/installation/update-installation/auf-utf-8-umstellen.html
https://docs.oxid-esales.com/eshop/de/5.3/installation/update-installation/auf-utf-8-umstellen.html

into two files:

1. queries, where you can not lose data while the execution and.

2. queries, where you will lose data while the execution.

So we expect, that you read the second file especially carefully!

You will recognize the second file on its postfix ‘_cleanup’.

OXID eShop Community Edition:

1. migrate_ce_5_3_to_6_0.sql

2. migrate_ce_5_3_to_6_0_cleanup.sql

OXID eShop Professional Edition:

1. migrate_pe_5_3_to_6_0.sql

2. migrate_pe_5_3_to_6_0_cleanup.sql

OXID eShop Enterprise Edition

1. migrate_ee_5_3_to_6_0.sql

2. migrate_ee_5_3_to_6_0_cleanup.sql

INNODB: CHANGE OF DATABASE ENGINE

The database engine in OXID eShop 4.10 / 5.3 is mostly MyISAM. In OXID eShop 6, the

database engine is InnoDB for all database tables.

Migrating the database with the scripts (see the previous section) from MyISAM to InnoDb

may need some time, additional disk space and RAM. Be sure to plan a maintenance

window in your production shop, provide enough disk space and RAM on your MySQL

server.

If you implemented your own queries to OXID eShop database tables, be sure to sort the

results explicitely (e.g. using the MySQL ORDER BY). Otherwise the order of the results may

change with the migration from MyISAM to InnoDB.

DATABASE API

Read these changes carefully if you implemented own database queries. Otherwise you

2018-02-21 139

https://docs.oxid-esales.com/developer/en/6.0/_downloads/migrate_ce_5_3_to_6_0.sql
https://docs.oxid-esales.com/developer/en/6.0/_downloads/migrate_ce_5_3_to_6_0_cleanup.sql
https://docs.oxid-esales.com/developer/en/6.0/_downloads/migrate_pe_5_3_to_6_0.sql
https://docs.oxid-esales.com/developer/en/6.0/_downloads/migrate_pe_5_3_to_6_0_cleanup.sql
https://docs.oxid-esales.com/developer/en/6.0/_downloads/migrate_ee_5_3_to_6_0.sql
https://docs.oxid-esales.com/developer/en/6.0/_downloads/migrate_ee_5_3_to_6_0_cleanup.sql

can skip this section.

NEW INTERFACES

OXID eShop 4.10 / 5.3 introduced new interfaces: the

\OxidEsales\Eshop\Core\Database\Adapter\DatabaseInterface and the

\OxidEsales\Eshop\Core\Database\Adapter\ResultSetInterface . Be aware that there are already

deprecated methods in the interfaces in OXID eShop 4.10 / 5.3 which were removed in
OXID eShop 6. Hints for replacing those methods in your code will be shown in the

following sections.

DATABASEINTERFACE

the function parameter $executeOnSlave for some functions is deprecated in OXID eShop 5.3.

You could additionally call DatabaseInterface::forceMasterConnection() before or encapsulate your logic

in a transaction. Both mechanisms will force SQL queries to be read from the master server

from this point on. This was done due to the changed MySQL master slave handling in OXID

eShop 6. See the section Master slave for details.

the constant DatabaseInterface::FETCH_MODE_DEFAULT shouldn’t be used any more. Doctrine uses

FETCH_MODE_BOTH by default.

The database transaction isolation level is set on session scope, not globally any more. Have

a look at the comments of the method DatabaseInterface::setTransactionIsolationLevel() .

RESULTSETINTERFACE

there is no way any more to move the pointer inside the resultSet any more in OXID

eShop 6. The related methods will be removed completely. Do not use them, there is
no elegant replacement.

ResultSetInterface::move()

ResultSetInterface::moveNext()

ResultSetInterface::moveFirst()

ResultSetInterface::moveLast()

ResultSetInterface::_seek()

ResultSetInterface::EOF()

Deprecated (5.3) logic, does not work in 6.0 and higher any more:

$rs = oxDb::getDb()->select($sQuery);

2018-02-21 140

Example: new (since 6.0) logic

the following methods can be replaced with ResultSetInterface::fetchAll() in OXID

eShop 6 to retrieve all rows or ResultSetInterface::fetchRow() to retrieve a single row:

ResultSetInterface::getAll()

ResultSetInterface::getArray()

ResultSetInterface::getRows()

The methods, which are related to the ADODB lite ResultSet *fields* property meta data

were completely removed in OXID eShop 6.

ResultSetInterface::fetchField() Do not use any more.

ResultSetInterface::fields($field) Do not use any more.

ResultSetInterface::recordCount() will be removed completely. Do not retrieve the

affected row in the RecordSet , but in the DatabaseInterface .

The methods DatabaseInterface::select() and DatabaseInterface::selectLimit() now

return an object of the type ResultSetInterface .

More examples how to use the database, can be found here.

DIFFERENCE BETWEEN READ AND WRITE METHODS

In OXID eShop 4.10 / 5.3 you can use the methods execute and select synonymously. In
OXID eShop 6, the method DatabaseInterface::select() can only be used for read alike

methods (SELECT , SHOW) that return a kind of result set. The method

DatabaseInterface::execute() must be used for write alike methods (INSERT , UPDATE ,

if ($rs != false && $rs->recordCount() > 0) {
 while (!$rs->EOF) {
 //do something
 $rs->moveNext();
 }
}

$resultSet = \OxidEsales\Eshop\Core\DatabaseProvider::getDb()->select($query);
 //Fetch the results row by row
 if ($resultSet != false && $resultSet->count() > 0) {
 while (!$resultSet->EOF) {
 $row = $resultSet->getFields();
 //do something
 $resultSet->fetchRow();
 }
 }

2018-02-21 141

https://docs.oxid-esales.com/developer/en/6.0/modules/using_database.html
https://docs.oxid-esales.com/developer/en/6.0/modules/using_database.html
https://docs.oxid-esales.com/developer/en/6.0/modules/using_database.html
https://docs.oxid-esales.com/developer/en/6.0/modules/using_database.html
https://docs.oxid-esales.com/developer/en/6.0/modules/using_database.html
https://docs.oxid-esales.com/developer/en/6.0/modules/using_database.html
https://docs.oxid-esales.com/developer/en/6.0/modules/using_database.html

DELETE) in OXID eShop 6. See the section Master slave for details.

TRANSACTIONS

If you use transactions in your database queries, please read this section. The transaction

handling has changed substantially in OXID eShop 6:

nested transactions are possible now. If one transaction fails, the whole chain of nested

transactions is rolled back completely. In some cases it might not be evident that your

transaction is already running within an other transaction.

as all OXID eShop tables now support InnoDb, transactions are possible on all OXID eShop

tables.

For details have a look on the transactions documentation

ADODB LITE

The library for the database abstraction layer (DBAL) changed from ADOdb Lite in OXID

eShop 4.10 / 5.3 to Doctrine DBAL in OXID eShop 6.

As using the library ADOdb Lite directly was not recommended at any time, you should

not have to take care for this change.

LOG MYSQL QUERIES

The possibility to log MySQL queries was removed. There is no explicit recommendation

on how to replace this feature in your OXID eShop.

SESSION STORAGE

The possibility to save sessions to the eShop application database was removed. A blog

post about the impact and alternatives in OXID eShop 6 and can be found on oxidforge.

MASTER SLAVE

The implementation and usage of MySQL master slave replication changed in OXID eShop

6. This results in the following changes:

2018-02-21 142

https://docs.oxid-esales.com/developer/en/6.0/modules/using_database.html#modules-database-transactions
https://docs.oxid-esales.com/developer/en/6.0/modules/using_database.html#modules-database-transactions
https://docs.oxid-esales.com/developer/en/6.0/modules/using_database.html#modules-database-transactions
https://sourceforge.net/projects/adodblite/
https://sourceforge.net/projects/adodblite/
https://sourceforge.net/projects/adodblite/
http://www.doctrine-project.org/projects/dbal.html
http://www.doctrine-project.org/projects/dbal.html
http://www.doctrine-project.org/projects/dbal.html
https://oxidforge.org/en/session-handling-with-oxid-eshop-6-0.html

Next

the parameter executeOnSlave was deprecated in OXID eShop 4.10 / 5.3. Have a look at the

section Database API on how to avoid executeOnSlave .

the configuration parameter iMasterSlaveBalance was used in OXID eShop 4.10 / 5.3 to balance

the amount of read accesses between master and slave(s). Due to differences in now letting

Doctrine DBAL handle Master/Slave connections the balance feature cannot be supported

anymore.

as the ratio between master and slave utilisation can vary between an OXID eShop 4.10 / 5.3

and an OXID eShop 6, you have to review your master slave concept with OXID eShop 6.

for database queries in modules please have a look at the database documentation.

Previous

© Copyright 2017 - 2018, OXID eSales AG.

2018-02-21 143

https://docs.oxid-esales.com/developer/en/6.0/modules/using_database.html#modules-database-master-slave
https://docs.oxid-esales.com/developer/en/6.0/modules/using_database.html#modules-database-master-slave
https://docs.oxid-esales.com/developer/en/6.0/modules/using_database.html#modules-database-master-slave

Edit on GitHubDocs » Update » Major update from 4.10 / 5.3 to version 6.0.0 » Modules

MODULES

For updating existing modules from OXID eShop 4.10/5.3 to OXID eShop 6, either

get an OXID eShop 6 compatible version of your modules or

update the modules by yourself. Please have a look at the following sections on how to

update by yourself.

OVERVIEW ABOUT THE STEPS TO PORT A MODULE
TO THE OXID ESHOP VERSION 6.0

In the table below you can find an overview what steps you can, and at least have to do, to
port your module to the OXID eShop version 6.0. Every line of the table represents a step

or an adaption. As you see, there are two columns named “Minimal” and “Full”. Your

absolute to-dos for now are marked as “Minimal” with a “âœ””. They tell you, that you

have to do them in order to end up with a module which works with the OXID eShop

version 6.0. All to-dos are marked as “Full”. This tells you, that you are not done after the

“Minimal” porting of your module. There are more steps to make to be fully aligned with

the version 6.0. We strongly recommend you to do the “Full” steps now, or as soon as

possible. We do so, cause

you will fit better in OXIDs long term stable investment strategy and

with the next (major) versions there will be more changes, which will add up to a bigger

amount of open to-dos.

Topic Minimal Full

Assure test coverage for your code âœ” âœ”

OXID eShop developer documentation

2018-02-21 144

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/modules.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/modules.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/modules.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/modules.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/modules.rst

(*) If you are maintaining a module which is part of the OXID eShop Compilation the

installation has to work via composer!

MINIMAL STEPS

This section describes the minimum changes, which are necessary to make an existing

module compatible with OXID eShop version 6.0.

COVER YOUR CODE WITH TESTS

Make sure that you have all important logic covered by tests - Unit, Integration and

Acceptance. Let them run once after every step in this guide.

UTF-8 ONLY

Starting with the 6.0 the OXID eShop is UTF-8 only. This means all
your modules

Translation files,

SQL files,

Code files,

Test files,

and all other files

have to be UTF-8 encoded.

REQUIRED PHP VERSION

Convert all files to UTF-8 âœ” âœ”

Adjust PHP version âœ” âœ”

Adjust removed functionality âœ” âœ”

Adjust your database code to the new DB Layer âœ” âœ”

Adjust the code style of your modules code âœ”

Exchange BC Layer classes âœ”

Remove deprecated code âœ”

Installable via composer* âœ”

Introduce a namespace in your module âœ”

2018-02-21 145

The code must work with PHP 5.6 and higher. Check the official PHP migration

documentation on php.net what you have to do.

REMOVED FUNCTIONALITY IN OXID ESHOP

Make sure your module does not use any of the functionality that was deprecated in 5.3

and has been removed in OXID eShop 6.0. You can find a list of changes in OXID Forge.

STICK TO DATABASE INTERFACES

Especially have an eye on the changes in database layer. ADOdb Lite (OXID eShop 5.x)

was exchanged in favour of Doctrine/DBAL which leads to some slightly different

behaviour in some cases. We had to introduce some backwards compatibility breaks

there.

Check 5.3 code for what will be deprecated:

OXID eShop 5.3 ResultSetInterface

OXID eShop 5.3 DatabaseInterface

New equivalents:

OXID eShop 6.0 ResultSetInterface

OXID eShop 6.0 DatabaseInterface

In ADOdb Lite there was not such a thing as a ResultSetInterface, it was introduced in
v5.3.0 to be able to have an upgrade path to the version 6.0.

IMPORTANT: Return values of e.g. oxDb::getDb()->select() and oxDb::getDb()-

>selectLimit() have changed, now an instance of ResultSet (implementing

ResultSetInterface) is returned.

Deprecated (5.3) logic, does not work in 6.0 and higher any more:

$rs = oxDb::getDb()->select($sQuery);
if ($rs != false && $rs->recordCount() > 0) {
 while (!$rs->EOF) {
 //do something
 $rs->moveNext();
 }

2018-02-21 146

http://php.net/manual/en/migration56.php
http://php.net/manual/en/migration56.php
http://php.net/manual/en/migration56.php
http://php.net/manual/en/migration56.php
http://php.net/manual/en/migration56.php
http://php.net/manual/en/migration56.php
http://php.net/manual/en/migration56.php
http://php.net/manual/en/migration56.php
https://oxidforge.org/en/oxid-eshop-v6-0-0-beta1-detailed-code-changelog.html
https://oxidforge.org/en/oxid-eshop-v6-0-0-beta1-detailed-code-changelog.html
https://oxidforge.org/en/oxid-eshop-v6-0-0-beta1-detailed-code-changelog.html
https://github.com/OXID-eSales/oxideshop_ce/blob/b-5.3-ce/source/core/interface/ResultSetInterface.php
https://github.com/OXID-eSales/oxideshop_ce/blob/b-5.3-ce/source/core/interface/ResultSetInterface.php
https://github.com/OXID-eSales/oxideshop_ce/blob/b-5.3-ce/source/core/interface/ResultSetInterface.php
https://github.com/OXID-eSales/oxideshop_ce/blob/b-5.3-ce/source/core/interface/ResultSetInterface.php
https://github.com/OXID-eSales/oxideshop_ce/blob/b-5.3-ce/source/core/interface/ResultSetInterface.php
https://github.com/OXID-eSales/oxideshop_ce/blob/b-5.3-ce/source/core/interface/ResultSetInterface.php
https://github.com/OXID-eSales/oxideshop_ce/blob/b-5.3-ce/source/core/interface/ResultSetInterface.php
https://github.com/OXID-eSales/oxideshop_ce/blob/b-5.3-ce/source/core/interface/DatabaseInterface.php
https://github.com/OXID-eSales/oxideshop_ce/blob/b-5.3-ce/source/core/interface/DatabaseInterface.php
https://github.com/OXID-eSales/oxideshop_ce/blob/b-5.3-ce/source/core/interface/DatabaseInterface.php
https://github.com/OXID-eSales/oxideshop_ce/blob/b-5.3-ce/source/core/interface/DatabaseInterface.php
https://github.com/OXID-eSales/oxideshop_ce/blob/b-5.3-ce/source/core/interface/DatabaseInterface.php
https://github.com/OXID-eSales/oxideshop_ce/blob/b-5.3-ce/source/core/interface/DatabaseInterface.php
https://github.com/OXID-eSales/oxideshop_ce/blob/b-5.3-ce/source/core/interface/DatabaseInterface.php
https://github.com/OXID-eSales/oxideshop_ce/blob/master/source/Core/Database/Adapter/ResultSetInterface.php
https://github.com/OXID-eSales/oxideshop_ce/blob/master/source/Core/Database/Adapter/ResultSetInterface.php
https://github.com/OXID-eSales/oxideshop_ce/blob/master/source/Core/Database/Adapter/ResultSetInterface.php
https://github.com/OXID-eSales/oxideshop_ce/blob/master/source/Core/Database/Adapter/ResultSetInterface.php
https://github.com/OXID-eSales/oxideshop_ce/blob/master/source/Core/Database/Adapter/ResultSetInterface.php
https://github.com/OXID-eSales/oxideshop_ce/blob/master/source/Core/Database/Adapter/ResultSetInterface.php
https://github.com/OXID-eSales/oxideshop_ce/blob/master/source/Core/Database/Adapter/ResultSetInterface.php
https://github.com/OXID-eSales/oxideshop_ce/blob/master/source/Core/Database/Adapter/DatabaseInterface.php
https://github.com/OXID-eSales/oxideshop_ce/blob/master/source/Core/Database/Adapter/DatabaseInterface.php
https://github.com/OXID-eSales/oxideshop_ce/blob/master/source/Core/Database/Adapter/DatabaseInterface.php
https://github.com/OXID-eSales/oxideshop_ce/blob/master/source/Core/Database/Adapter/DatabaseInterface.php
https://github.com/OXID-eSales/oxideshop_ce/blob/master/source/Core/Database/Adapter/DatabaseInterface.php
https://github.com/OXID-eSales/oxideshop_ce/blob/master/source/Core/Database/Adapter/DatabaseInterface.php
https://github.com/OXID-eSales/oxideshop_ce/blob/master/source/Core/Database/Adapter/DatabaseInterface.php

Example: new logic (since 6.0)

Another example: new logic (since 6.0)

IMPORTANT NOTE: do not try something like this, you will lose the first result row:

What will happen: the ResultSet immediately executes the first call to
ResultSet::fetchRow() in its constructor and each following call to ResultSet::fetchRow()

advances the content of ResultSet::fields to the next row. Always access ResultSet::fields

before calling ResultSet::fetchRow() again.

FULL STEPS

On top of the minimal steps we recommend you to take the following steps to completely

move your module to the version 6.0 of the OXID eShop.

CODE STYLE

}

$resultSet = \OxidEsales\Eshop\Core\DatabaseProvider::getDb()->select($query);
//Fetch the results row by row
if ($resultSet != false && $resultSet->count() > 0) {
 while (!$resultSet->EOF) {
 $row = $resultSet->getFields();
 //do something
 $resultSet->fetchRow();
 }
}

$resultSet = \OxidEsales\Eshop\Core\DatabaseProvider::getDb()->select($query);
//Fetch all at once (beware of big arrays)
$allResults = $resultSet->fetchAll()
foreach($allResults as $row) {
 //do something
};

$resultSet = \OxidEsales\Eshop\Core\DatabaseProvider::getDb()->select($query);
while ($row = $resultSet->fetchRow()) {
 //do something
};

2018-02-21 147

From OXID eShop version 6.0 on PSR-0 and PSR-4 standards will be used in OXID eShop

core code. Our Codesniffer can help you achieving this goal.

BACKWARDS COMPATIBILITY LAYER AND UNIFIED NAMESPACE

Mind that from version 6.0 on the OXID eShop is using namespaces. Therefore nearly all

classes known from 5.3 (e.g. oxArticle) and previous versions are deprecated now. They

exist only as aliases in which we call the Backwards Compatibility Layer (from now on

abbreviated with BC Layer).

As long as the BC Layer is in place, you can use the backwards compatibility classes (e.g.

oxArticle) equivalent to the actual classes from the Unified Namespace (e.g.

\OxidEsales\Eshop\Application\Model\Article). The Unified Namespace is an abstraction for

classes which exist in several Editions of the OXID eShop. As soon as the BC Layer is
dropped in a future release of OXID eShop, you will have to fully port your module to the

new Unified Namespaced classes (see Unified Namespace).

Replace all OXID eShop backwards compatibility classes (e.g. oxArticle) in your module

by the equivalent fully qualified Unified Namespace classes.

check usages in oxNew and new

Use the Unified Namespace class names for calls to

Registry::set() and Registry::get().

REMOVE DEPRECATED CODE

Besides the usage of backwards compatibility classes there might exist more usages of

// Old style (using BC Layer)
$article = oxNew('oxarticle');
$field = new oxField();

// New style:
$article = oxNew(\OxidEsales\Eshop\Application\Model\Article::class);
$field = new \OxidEsales\Eshop\Core\Field();

// Old style:
oxRegistry::get('oxSeoEncoderVendor');

// New style:
\OxidEsales\Eshop\Core\Registry::get(\OxidEsales\Eshop\Application\Model\SeoEncoderVendor

2018-02-21 148

https://oxidforge.org/en/coding-standards.html
https://oxidforge.org/en/coding-standards.html
https://oxidforge.org/en/coding-standards.html
https://oxidforge.org/en/coding-standards.html
https://oxidforge.org/en/coding-standards.html
https://oxidforge.org/en/coding-standards.html
https://oxidforge.org/en/coding-standards.html
https://github.com/OXID-eSales/coding_standards
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html#bclayer-20170426
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html#bclayer-20170426
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html#bclayer-20170426
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html#bclayer-20170426
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html#bclayer-20170426
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html#bclayer-20170426
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html#modules-unified-namespaces-20170526
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html#modules-unified-namespaces-20170526
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html#modules-unified-namespaces-20170526
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html#modules-unified-namespaces-20170526
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html#modules-unified-namespaces-20170526
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html#modules-unified-namespaces-20170526
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html#bclayer-20170426
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html#bclayer-20170426
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html#bclayer-20170426
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html#modules-unified-namespaces-20170526
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html#modules-unified-namespaces-20170526
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html#modules-unified-namespaces-20170526
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html#modules-unified-namespaces-20170526
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html#modules-unified-namespaces-20170526
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html#modules-unified-namespaces-20170526
https://docs.oxid-esales.com/developer/en/6.0/modules/using_namespaces_in_modules.html#modules-unified-namespaces-20170526

deprecated code in your modules. Choose your favourite IDE (integrated development

environment) and do a code analysis on deprecations. Additionally you can have a look to
a list of all deprecations in the source code documentation <http://docu.oxid-

esales.com/CE/sourcecodedocumentation>.

MAKE MODULE INSTALLABLE VIA COMPOSER

We recommend that the module is made installable via composer. Modules that will go to
the (OXID eShop Compilation) MUST be installable via composer. Information what

needs to be done (the keyword is composer.json) can be found here. Verify that composer

correctly installs it.

Important

if you made changes to the file modules/composer.json in OXID eShop 4.10 / 5.3, port those

changes into the root composer.json file in OXID eShop 6 or into a modules composer.json

file

MOVE THE MODULE UNDER A MODULE NAMESPACE

Introduce the module namespace in the module’s composer.json file’s autoload

section.

NOTE: we recommend to point the namespace to the module’s installation path in
the shop’s module directory. See for example OXID eShop Extension PayPal.

Use the following pattern for your module namespace:

<vendor of the module>`\<module ID> (e.g. OxidEsales\PayPalModule)

You can find more about the Vendor Id in the Glossary.

"autoload": {
 "psr-4": {
 "MyVendor\\MyModuleNamespace\\": "../../../source/modules/myvendor/mymoduleid"
 }
}

"autoload": {
 "psr-4": {
 "OxidEsales\\PayPalModule\\": "../../../source/modules/oe/oepaypal"
 }
}

2018-02-21 149

https://github.com/OXID-eSales/paypal
https://github.com/OXID-eSales/paypal
https://github.com/OXID-eSales/paypal
https://github.com/OXID-eSales/paypal
https://github.com/OXID-eSales/paypal
https://github.com/OXID-eSales/paypal
https://github.com/OXID-eSales/paypal

Next

Move all the module classes under namespace.

While this step you should exchange all occurrences of the files name. Especially in
the metadata.php the ‘extends’ section should not be forgotten! Remove the entry

from the ‘files’ section, after you moved the class into the namespace. It is not

longer needed, cause the namespaces get autoloaded via composer.

Update metadata.php to version 2.0, see here. In case the module uses it’s own

controllers that do not simply chain extend shop controllers, you need to register a
controller key in the metadata.php ‘controller’ section like described here.

Your Controller Keys have to be lowercase and have to follow this pattern:

<vendor of the module><module ID><controller name> (e.g. oepaypalipnhandler)

Previous

© Copyright 2017 - 2018, OXID eSales AG.

//before:
class oePayPalIPNHandler extends oePayPalController
{
 //...
}

$handler = oxNew('oepaypalipnhandler');

//after:
namespace OxidEsales\PayPalModule\Controller;
class IPNHandler extends \OxidEsales\PayPalModule\Controller\FrontendController
{
 //...
}

$handler = oxNew(\OxidEsales\PayPalModule\Controller\IPNHandler::class);

'controllers' => array(
 ...
 'oepaypalipnhandler' => \OxidEsales\PayPalModule\Controller\IPNHandler::class,
 ...
),

2018-02-21 150

Edit on GitHubDocs » Update » Major update from 4.10 / 5.3 to version 6.0.0 » Theme

THEME

Depending on if you use the old deprecated theme azure or the new standard theme flow

in OXID eShop 4.10 / 5.3, you have to take different actions.

THEME AZURE

If you use or extend the deprecated theme azure in OXID eShop 4.10 / 5.3, we recommend

to use or extend the new standard theme flow instead.

If you want to use still the theme azure, you have to include azure first in OXID eShop 6 like

described in the azure installation instructions as it is not delivered by default any more.

There is an version of the flow theme compatible to OXID eShop 4.10 / 5.3 and a version

compatible to OXID eShop 6 like described here.

If you extended the azure theme with a custom theme, you have to update your custom

theme as described in the section Updating a custom theme. Please also update your

modules accordingly.

THEME FLOW

If you already use the theme flow in OXID eShop 4.10 / 5.3, you don’t have to do

anything. The flow theme is delivered by default with OXID eShop 6.

There is an OXID eShop 6 compatible version of the flow theme which has some

differences to the version delivered in OXID eShop 4.10 / 5.3 like described here.

If you extended the flow theme in OXID eShop 4.10 / 5.3 you have to check the differences

between the OXID eShop 4.10 / 5.3 compatible flow version and the OXID eShop 6

OXID eShop developer documentation

2018-02-21 151

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/theme.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/theme.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/theme.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/theme.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/theme.rst
https://github.com/OXID-eSales/azure-theme
https://github.com/OXID-eSales/flow_theme
https://github.com/OXID-eSales/azure-theme/
https://github.com/OXID-eSales/azure-theme/
https://github.com/OXID-eSales/azure-theme/
https://github.com/OXID-eSales/azure-theme/
https://github.com/OXID-eSales/azure-theme/
https://github.com/OXID-eSales/azure-theme/
https://github.com/OXID-eSales/azure-theme/
https://github.com/OXID-eSales/azure-theme/
https://github.com/OXID-eSales/azure-theme/
https://github.com/OXID-eSales/azure-theme/
https://github.com/OXID-eSales/azure-theme/
https://github.com/OXID-eSales/azure-theme/
https://github.com/OXID-eSales/flow_theme
https://github.com/OXID-eSales/flow_theme
https://github.com/OXID-eSales/flow_theme
https://github.com/OXID-eSales/flow_theme
https://github.com/OXID-eSales/flow_theme
https://github.com/OXID-eSales/azure-theme/
https://github.com/OXID-eSales/azure-theme/
https://github.com/OXID-eSales/azure-theme/
https://github.com/OXID-eSales/azure-theme/
https://github.com/OXID-eSales/azure-theme/

Next

compatible flow version. Afterwards, update your custom theme as described in the

section Updating a custom theme. Please also update your modules accordingly.

UPDATING A CUSTOM THEME

In order to use your custom theme (name yourThemeName in this example) from OXID eShop

4.10 / 5.3 in OXID eShop 6, copy the folders

application/views/yourThemeName from OXID eShop 4.10 / 5.3 to Application/views/yourThemeName in OXID

eShop 6

out/yourThemeName from OXID eShop 4.10 / 5.3 to the equivalent directory in OXID eShop 6

Afterwards you have to adapt your theme to the new version of its parent theme. Also

copy the file favicon.ico from the shops root folder if you modified it.

Previous

© Copyright 2017 - 2018, OXID eSales AG.

2018-02-21 152

Edit on GitHub

Next

Docs » Update » Major update from 4.10 / 5.3 to version 6.0.0 »
Removed features and new features

REMOVED FEATURES AND NEW
FEATURES

Extracted features

Libraries

Miscelaneous changes

Previous

© Copyright 2017 - 2018, OXID eSales AG.

OXID eShop developer documentation

2018-02-21 153

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/features/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/features/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/features/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/features/index.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/features/index.rst

Edit on GitHub

Docs » Update » Major update from 4.10 / 5.3 to version 6.0.0 »

Removed features and new features » Extracted features

EXTRACTED FEATURES

INTRODUCTION TO EXTRACTED FEATURES

Some features in the core of OXID eShop 4.10 / 5.3 were extracted into OXID eShop 6
compatible modules. If you used or extended one of those features in OXId eShop 4.10 /
5.3, you should read this document carefully. The mentioned OXID eShop modules are

available on Github. If you want to contribute to the development of one of those modules,

this is possible via a pull request.

In the following sections the affected features and the steps for migrating existing data are

described. If you extended one of those features in OXID eShop 4.10 / 5.3, you have to
extend the corresponding contribution module in OXID eShop 6. If you did not use or

extend one of those features in OXID eShop 4.10 / 5.3, there is nothing to to.

TAGS

The feature to tag products was was extracted to the module Tags.

MIGRATION

Possible places for data migrations:

In OXID eShop 4.10 / 5.3, the database table oxartextends had the columns OXTAGS_* . In order

to migrate your existing tags, simply rename these columns in OXID eShop 6 to to OETAGS_*

related functionality like the search might also be affected as it relies on the tags feature in

OXID eShop 4.10 / 5.3

the tag categories (http://myoxideshop.com/tags/*) are not available any more in OXID eShop 6

OXID eShop developer documentation

2018-02-21 154

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/features/contribution_modules.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/features/contribution_modules.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/features/contribution_modules.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/features/contribution_modules.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/features/contribution_modules.rst
https://github.com/OXIDprojects
https://github.com/OXIDprojects/tags-module

regeneration of seo links (table oxseo) might be necessary

the config variable sTagSeparator in OXID eShop 4.10 / 5.3 is called oetagsSeparator in the

contribution module

the config variable blShowTags (Display tags in eShop) is called in OXID eShop 4.10 / 5.3 and

located in Core Settings â€£ Settings â€£ Shop Frontend in the OXID eShop admin. In the

contribution module this setting is called oetagsShowTags and located in the modules setting tab.

the config variable aSearchCols (fields to be considered in the Search) needs to be updated as

it contains oxtags in OXID eShop 4.10 / 5.3.

Tags related css classes were removed/renamed in the module.

the Tags javascript widget was removed/renamed in the module.

Important

The performance of the Tags module might suffer as the module does not use the

FULLTEXT feature of the database engine MyISAM any more.

Important

EE needs the EE_addon tags module in addition to work with varnish. (see installation

instructions)

LEXWARE EXPORT / (XML EXPORT OF ORDERS)

The export of orders into XML documents (Lexware export) in OXID eShop 4.10 / 5.3 was

extracted to the module Lexware Export.

MIGRATION

There is a config option for VAT settings for the XML export. In OXID eShop 4.10 / 5.3, this

option was called aLexwareVAT and located in the OXID eShop admin in Core Settings â€£

Settings â€£ Other settings. In OXID eShop 6, this option is called aOELexwareExportVAT and

you will find this setting in the settings tab of the Lexware export module. Be sure to
migrate your settings from this config option.

If you extended or modified this functionality or translations in OXID eShop 4.10 / 5.3, you

have to port your changes.

EXTENDED ORDER ADMINISTRATION (ORDER
SUMMARY AND PICK LISTS)

The extended order administration feature of OXID eShop 4.10 / 5.3 was extracted to the

module Extended Order Administration.

2018-02-21 155

https://github.com/OXIDprojects/tags-module/blob/master/README.rst
https://github.com/OXIDprojects/tags-module/blob/master/README.rst
https://github.com/OXIDprojects/lexware-export-module
https://github.com/OXIDprojects/lexware-export-module
https://github.com/OXIDprojects/lexware-export-module
https://github.com/OXIDprojects/extended-order-administration-module
https://github.com/OXIDprojects/extended-order-administration-module
https://github.com/OXIDprojects/extended-order-administration-module
https://github.com/OXIDprojects/extended-order-administration-module
https://github.com/OXIDprojects/extended-order-administration-module

If you extended or modified this functionality or translations in OXID eShop 4.10 / 5.3, you

have to port your changes.

STATISTICS

The statistics feature of OXID eShop 4.10 / 5.3 (e.g statistics about conversion rate,

number of visitors) was extracted to the module Statistics.

MIGRATION

In OXID eShop 4.10 / 5.3, the statistics were stored in the tables oxlogs and oxstatistics .

In OXID eShop 6, they are stored in the tables oestatisticslog and oestatistics . In order

to migrate your existing entries, simple copy and rename the tables oxlogs and

oxstatistics .

If you extended or modified this functionality, translations or database tables in OXID

eShop 4.10 / 5.3, you have to port your changes.

FACEBOOK

The Facebook feature of OXID eShop 4.10 / 5.3 was extracted to the module Facebook

Social Plugins. If you extended or modified this functionality or translations in OXID eShop

4.10 / 5.3, you have to port your changes.

Important

The Facebook functionality in OXID eShop 4.10 / 5.3 used an old version of the Facebook

API and therefor partly did not work. Our recommendation is to use a third party module

for facebook integration.

CAPTCHA

The captcha feature of OXID eShop 4.10 / 5.3 was extracted to the module Captcha. If you

extended or modified the captcha functionality, the database table oxcaptcha or

translations in OXID eShop 4.10 / 5.3, you have to port your changes.

Important

Our recommendation is to use a third party module for captcha functionality as there are

more advanced approaches.

2018-02-21 156

https://github.com/OXIDprojects/statistics-module
https://github.com/OXIDprojects/facebook-social-plugins-module
https://github.com/OXIDprojects/facebook-social-plugins-module
https://github.com/OXIDprojects/facebook-social-plugins-module
https://github.com/OXIDprojects/facebook-social-plugins-module
https://github.com/OXIDprojects/captcha-module

Next

GUESTBOOK

The guestbook feature of OXID eShop 4.10 / 5.3 was replaced by the module Guestbook

module.

Important

Currently it’s not possible to use this feature in the Enterprise Edition, the module is for

Community and Professional Edition only at the moment.

MIGRATION

In OXID eShop 5.3, the guestbook entries were stored in the table oxgbentries . In OXID eShop

6, they are stored in the table oeguestbookentry . In order to migrate your existing guestbook

entries, simple copy and rename the table oxgbentries .

There are config options for the maximum guestbook entries a user can write per day and if

you want to moderate the guestbook. In OXID eShop 4.10 / 5.3. these config options were

called iMaxGBEntriesPerDay and blGBModerate (database table oxconfig). In the OXID eShop they

were located in Core Settings â€£ Settings â€£ Other settings. In OXID eShop 6, you will

find these settings in the settings tab of the guestbook module. They are called

oeGuestBookMaxGuestBookEntriesPerDay and oeGuestBookModerate . Be sure to migrate your settings from

these config options.

seo links have to be regenerated

If you extended or modified the guestbook functionality, translations or seo settings in
OXID eShop 4.10 / 5.3, you have to port your changes.

INVOICEPDF LEFT OVERS

In the version 4.10 / 5.3 of the OXID eShop PDF invoice generation was included. In OXID

eShop 6 it is removed from the OXID eShop code and added as an own repository.

Previous

© Copyright 2017 - 2018, OXID eSales AG.

2018-02-21 157

https://github.com/OXIDprojects/guestbook-module
https://github.com/OXIDprojects/guestbook-module
https://github.com/OXIDprojects/pdf-invoice-module
https://github.com/OXIDprojects/pdf-invoice-module
https://github.com/OXIDprojects/pdf-invoice-module

Edit on GitHub

Docs » Update » Major update from 4.10 / 5.3 to version 6.0.0 »

Removed features and new features » Libraries

LIBRARIES

We dropped or exchanged several libraries in the OXID eShop. If you used one of those

libraries directly (not via OXID eShop API or GUI, which is not recommended by OXID

eSales), you have to find a workaround or include the library via your projects root

composer.json file.

ADODB LITE

See further information about the therefore made changes.

JPGRAPH

JpGraph is a graph drawing library. In OXID eShop 4.10 / 5.3 the JpGraph library with the

version 2.5 was included in the directory core/jpgraph> . If you somehow used the

functionality of the JpGraph library, we recommend to require it via composer. There is a
public available package which points to the JpGraph github repository.

FACEBOOK

As stated in this section, the facebook functionality was moved into a module.

SMARTY

We exchanged the smarty library from our code base with a composer required package.

In the version 4.10 / 5.3 of the OXID eShop was used the smarty version 2.6.25. In the

OXID eShop version 6.0 the smarty version 2.6.30 is used. It should not add much effort to
update your code. But if something stops working, we recommend to look through the

OXID eShop developer documentation

2018-02-21 158

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/features/libraries.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/features/libraries.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/features/libraries.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/features/libraries.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/features/libraries.rst
http://jpgraph.net/
https://packagist.org/packages/jpgraph/jpgraph
https://packagist.org/packages/jpgraph/jpgraph
https://packagist.org/packages/jpgraph/jpgraph
https://packagist.org/packages/jpgraph/jpgraph
https://packagist.org/packages/jpgraph/jpgraph
https://github.com/ztec/JpGraph/releases
https://github.com/ztec/JpGraph/releases
https://github.com/ztec/JpGraph/releases
https://github.com/ztec/JpGraph/releases
https://github.com/ztec/JpGraph/releases
https://packagist.org/packages/smarty/smarty
https://packagist.org/packages/smarty/smarty
https://packagist.org/packages/smarty/smarty
https://packagist.org/packages/smarty/smarty
https://packagist.org/packages/smarty/smarty

smarty documentation.

PHPMAILER

We exchanged the PHPMailer library from our code base with a composer required

package. Cause we sticked to the version of this library, there will be nothing to do left for

you.

WYSIWYGPRO AND THE OUT/PICTURES/WYSIWYGPRO
DIRECTORY

The WysiwygPro html editor in OXID eShop 5 Professional Edition and Enterprise Edition

was replaced with the module WYSIWYG Editor in OXID eShop 6. You have to read this

section and take actions if you either:

uploaded files (e.g. images) in any input field managed by the WysiwygPro editor. This can

be the long description of an article or any field managed by a 3rd party module.

or used the WysiwygPro directory out/pictures/wysiwygpro directly.

In this case you have to run the following steps:

1. Move the files from the old directory to the new directory:

1. Create the folder out/pictures/ddmedia in your OXID eShop 6 and make it writable.

2. Move all files from the folder out/pictures/wysiwygpro of your OXID eShop 5 to the folder

out/pictures/ddmedia in your OXID eShop 6.

2. Index the files inside the directory out/pictures/ddmedia in order to use them with the WYSIWYG

Editor:

1. Activate the module WYSIWYG Editor + Mediathek in your OXID eShop 6. (Extensions

â€£ Modules â€£ WYSIWYG Editor + Mediathek â€£ Activate).

2. The PHP script index_files_for_mediagallery read all files inside the directory

out/pictures/ddmedia and creates an index in the database. Download it.

3. Copy the script to the folder out/pictures/ddmedia .

4. Make the script executable.

5. Edit the script and configure your database connection at the top.

6. Execute the script:

Go to a shell

2018-02-21 159

https://www.smarty.net/
https://www.smarty.net/
https://www.smarty.net/
https://packagist.org/packages/phpmailer/phpmailer
https://packagist.org/packages/phpmailer/phpmailer
https://packagist.org/packages/phpmailer/phpmailer
https://packagist.org/packages/phpmailer/phpmailer
https://docs.oxid-esales.com/developer/en/6.0/_downloads/index_files_for_mediagallery

Next

Change your directory to out/pictures/ddmedia

Execute ./index_files_for_mediagallery

7. Delete the script.

3. Update existing contents in the database to use the new directory:

1. Download the PHP script migrate_existing_wysiwygpro_contents The goal of this script is

to replace all occurences of the directory out/pictures/wysiwygpro with out/pictures/ddmedia in all

possible database tables.

2. Open this file and configure the database connection to your OXID eShop 4.10 / 5.3

database at the top.

3. If you have configured additional languages or use own tables storing contents of

WysiwygPro, you may have to configure additional fields and tables inside the script.

Please see the instructions inside the script.

4. Execute the script:

Go to a shell

Execute /path/to/the/script/migrate_existing_wysiwygpro_contents

5. Delete the script.

Previous

© Copyright 2017 - 2018, OXID eSales AG.

2018-02-21 160

https://docs.oxid-esales.com/developer/en/6.0/_downloads/migrate_existing_wysiwygpro_contents

Edit on GitHub

Docs » Update » Major update from 4.10 / 5.3 to version 6.0.0 »

Removed features and new features » Miscelaneous changes

MISCELANEOUS CHANGES

The following changes could, but don’t have to be relevant for the update of your OXID

eShop. Read them carefully and decide if you have to take actions.

EXCEPTION HANDLING

The exception handler was refactored in a way to catch more exceptions than before.

Therefor you should have a look at the file log/EXCEPTION_LOG.txt after you completed the

whole update to OXID eShop 6. Goal should be to have no exceptions in this file.

If you configured exception handling by overwriting the method

oxShopControl::_setDefaultExceptionHandler() , you can do this from now on by calling the

PHP method set_exception_handler() in the file modules/functions.php .

The format of the file log/EXCEPTION_LOG.txt changed a little bit, e.g. a data is included now:

[10 Oct 16:44:44.625024 2017] [exception] [type Exception] [code 0] [file
/var/www/oxideshop/source/Application/Controller/StartController.php] [line 128] [message
Argument not valid]
[10 Oct 16:44:44.625024 2017] [exception] [stacktrace] #0
/var/www/oxideshop/source/Core/ShopControl.php(466):
OxidEsales\EshopCommunity\Application\Controller\StartController->render()
[10 Oct 16:44:44.625024 2017] [exception] [stacktrace] #1
/var/www/oxideshop/source/Core/ShopControl.php(357):
OxidEsales\EshopCommunity\Core\ShopControl-
>_render(Object(OxidEsales\Eshop\Application\Controller\StartController))
[10 Oct 16:44:44.625024 2017] [exception] [stacktrace] #2
/var/www/oxideshop/source/Core/ShopControl.php(289):
OxidEsales\EshopCommunity\Core\ShopControl-
>formOutput(Object(OxidEsales\Eshop\Application\Controller\StartController))
[10 Oct 16:44:44.625024 2017] [exception] [stacktrace] #3

OXID eShop developer documentation

2018-02-21 161

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/features/misc.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/features/misc.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/features/misc.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/features/misc.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/update/eshop_from_53_to_6/features/misc.rst

GENERIC IMPORT AND ERP

If you rely on one of the following old classes, e.g. in a module, you should take care to
use the equivalent classes as described. In OXID eShop 4.10 / 5.3, the code of the Generic

Import was duplicated in the OXID eShop and the OXID ERP Interface. With OXID eShop 6,

we cleaned up this thing: the code of the Generic Import is now only in the OXID eShop.

CHANGED

The files from core/objects are now in the directory Core/GenericImport/ImportObject . For

some of them the inheritance chain changed (we describe here only the changes on class

level):

the main base class changed from oxERPType to ImportObject , which is now abstract

oxERPType_Accessoire is now \OxidEsales\Eshop\Core\GenericImport\ImportObject\Accessories2Article

oxERPType_Artextends is now \OxidEsales\Eshop\Core\GenericImport\ImportObject\ArticleExtends

oxERPType_Article is now \OxidEsales\Eshop\Core\GenericImport\ImportObject\Article

oxERPType_Article2Action is now \OxidEsales\Eshop\Core\GenericImport\ImportObject\Article2Action

oxERPType_Article2Attribute is no longer available

oxERPType_Article2Category is now \OxidEsales\Eshop\Core\GenericImport\ImportObject\Article2Category

oxERPType_Attribute is no longer available

oxERPType_Category is now \OxidEsales\Eshop\Core\GenericImport\ImportObject\Category

oxERPType_Content is no longer available

oxERPType_Country is now \OxidEsales\Eshop\Core\GenericImport\ImportObject\Country

oxERPType_Crossselling is now \OxidEsales\Eshop\Core\GenericImport\ImportObject\CrossSelling

oxERPType_Order is now \OxidEsales\Eshop\Core\GenericImport\ImportObject\Order

oxERPType_OrderArticle is now \OxidEsales\Eshop\Core\GenericImport\ImportObject\OrderArticle

oxERPType_ScalePrice is now \OxidEsales\Eshop\Core\GenericImport\ImportObject\ScalePrice

oxERPType_User is now \OxidEsales\Eshop\Core\GenericImport\ImportObject\User

oxERPType_Vendor is now \OxidEsales\Eshop\Core\GenericImport\ImportObject\Vendor

REMOVED

/var/www/oxideshop/source/Core/ShopControl.php(150):
OxidEsales\EshopCommunity\Core\ShopControl->_process('OxidEsales\\Esho...', NULL, NULL, NULL)
[10 Oct 16:44:44.625024 2017] [exception] [stacktrace] #4
/var/www/oxideshop/source/Core/Oxid.php(42): OxidEsales\EshopCommunity\Core\ShopControl-
>start()
[10 Oct 16:44:44.625024 2017] [exception] [stacktrace] #5
/var/www/oxideshop/source/index.php(31): OxidEsales\EshopCommunity\Core\Oxid::run()
[10 Oct 16:44:44.625024 2017] [exception] [stacktrace] #6 {main}

2018-02-21 162

Next

In former OXID eShop versions the files oxerpbase.php, oxerpcsv.php and

oxerpgenimport.php were there for handling the ERP requests. In the version 6.0 all this

functionality is bundled in the class OxidEsalesEshopCoreGenericImportGenericImport.

This class lives in the directory SHOP_ROOTsourceCoreGenericImport.

DYNPAGES

The DynPages are not available for OXID eShop 6 anymore. If you extended it, search for a
different solution.

Previous

© Copyright 2017 - 2018, OXID eSales AG.

2018-02-21 163

Edit on GitHubDocs » Conventions for writing developer documentation

CONVENTIONS FOR WRITING DEVELOPER
DOCUMENTATION

SECTIONS

Each page MUST have one page title as the only first level heading, separated by === .

Otherwise last one would be as document name in Sphinx menu.

Subsequent headers should be marked with --- , ^^^ , """ , ~~~ etc.

Good examples:

Bad examples:

Title
=====

First level

Second level
^^^^^^^^^^^^

First level

Second level
^^^^^^^^^^^^

Third level
"""""""""""

Forth level
~~~~~~~~~~~

OXID eShop developer documentation

2018-02-21 164

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/conventions.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/conventions.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/conventions.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/conventions.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/conventions.rst
http://docutils.sourceforge.net/docs/user/rst/quickref.html#section-structure
http://docutils.sourceforge.net/docs/user/rst/quickref.html#section-structure
http://docutils.sourceforge.net/docs/user/rst/quickref.html#section-structure


Inconsistent headers:

Two titles in a page:

EXTERNAL LINKS

To be done...

USE REF OR DOC FOR LINKS

Use Ref or Doc to create a link to the page of current developer documentation project.

USING DOC

Use Doc when need to link to another file in same catalog.

Example:

Code:

Rendered result:

Modules

First level
-----------

Second level
""""""""""""

Third level
^^^^^^^^^^^

Title
=====

First level
-----------

Title
=====

First level
-----------

:doc:`Modules <modules/index>`

2018-02-21 165



USING REF

Use Ref when need to link to specific file part. References in Sphinx are global, so use

unique section name per document and time to form reference. Ref anchor schema:

section_name_with_underscores-YYYYMMDD

Good examples:

Code for Anchor inside page:

Code for link which can be in same or other page:

Rendered link result

Using Ref

Bad examples:

Prefixed with directory name:

Not suffixed with date:

TABLES

.. _conventions_for_using_ref-20160419:

Using Ref
---------

:ref:`Using Ref <conventions_for_using_ref-20160419>`

.. _common_agreements-general-conventions_for_development_wiki_rst_document-20160120:

.. _conventions_for_development_wiki_rst_document:

+-------------------+--------------------+
| Column 1 Heading  | Column 2 Heading   |
+===================+====================+
| Column 1 Cell 1   | Column 2 Cell1     |
+-------------------+--------------------+
| Column 1 Cell 2   | Column 2 Cell 2    |
+-------------------+--------------------+

2018-02-21 166



results in

CODE

See http://docutils.sourceforge.net/docs/ref/rst/directives.html#code. Be sure to indent the

code with spaces.

Example:

results in

HIGHLIGHT TEXT

INLINE MARKUP FOR MENU NAVIGATION

results in: Artikel verwalten â€£ Artikel

INLINE MARKUP FOR FILE NAMES

Column 1 Heading Column 2 Heading

Column 1 Cell 1 Column 2 Cell1

Column 1 Cell 2 Column 2 Cell 2

.. code:: php

  namespace \OxidEsales\Eshop\Community;

  class Example {}

namespace \OxidEsales\Eshop\Community;

class Example {}

:menuselection:`Artikel verwalten -->  Artikel`

:file:`/usr/lib/python2.{x}/site-packages`

2018-02-21 167

http://docutils.sourceforge.net/docs/ref/rst/directives.html#code


results in: /usr/lib/python2.x/site-packages

INLINE MARKUP FOR CONTROLS

results in: Cancel

INLINE MARKUP FOR CODE

results in: exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store']

INLINE MARKUP FOR COMMANDS

results in: cd ..\GitHub\Dokumentation-und-Hilfe

INLINE MARKUP FOR DOWNLOADS

IMAGES

Do not commit big files or images. Use a link to an external source inside repository. This will

help to keep repository small.

:guilabel:`Cancel`

``exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store']``

:command:`cd ..\\GitHub\\Dokumentation-und-Hilfe`

:download:`/downloads/varnish/6.0.0/default.vcl`

.. raw:: html

   <p>
      <img width="100" 
src="https://www.google.co.uk/images/branding/googlelogo/1x/googlelogo_color_272x92dp.png"/>
   </p>

2018-02-21 168



UML DIAGRAMS

Please do not commit big files or images.

Use UML source written with Plant UML or a similar tool instead of an UML image.

Note

PHPStorm has Plant UML plugin which generates UML on the fly. Look for “PlantUML tab”

at the right upper corner near “Remote Host” to see generated result.

Example:

- Rendered result:

- Code:

2018-02-21 169

http://plantuml.com/
http://plantuml.com/
http://plantuml.com/
https://plugins.jetbrains.com/plugin/7017
https://plugins.jetbrains.com/plugin/7017
https://plugins.jetbrains.com/plugin/7017
https://plugins.jetbrains.com/plugin/7017
https://plugins.jetbrains.com/plugin/7017


NextPrevious

© Copyright 2017 - 2018, OXID eSales AG.

.. uml::

   @startuml
   :functions.php oxNew('oxArticle');
   :oxUtilsObject::oxNew('oxArticle');
   if (Find real class name in cache) then
      ->found;
      :Get class name from static cache;
   else
      ->not found;
      :oxUtilsObject::getClassName();
      :oxEditionCodeHandler::getClassName();
      if (shop edition check) then
         ->Enterprise;
         :OxidEsales\Enterprise\ClassMap;
      else
         ->Professional;
         :OxidEsales\Professional\ClassMap;
      endif
      :oxModuleChainsGenerator::createClassChain('\Enterprise\Article', 'oxArticle');
      :$extensionsList = oxModuleVariablesLocator::getModuleVariable('aModules');
      :oxModuleChainsGenerator:filterInactiveExtensions($extensionsList);
      :$classExtensionsList = $extensionsList['oxArticle'];
      :oxModuleChainsGenerator:createClassExtensions($classExtensionsList, 
'\Enterprise\Article');

   endif
   :Create class with new \Enterprise\Article;
   @enduml

2018-02-21 170



Edit on GitHubDocs  » Glossary

GLOSSARY

INTRODUCTION

In this glossary we collect terms typical for the OXID world. We collect them in alphabetical

order and always try to describe them as easy and abstract as possible.

EDITION

An edition is child of the OXID eShop family. Editions are differentiated mainly by their

feature sets. Currently there are the editions Community, Professional, Enterprise and B2B.

META PACKAGE

A meta package defines the kind and the exact version of components of a OXID

Compilation See the composer.json file of the OXID eShop Community Edition meta

package for an example.

OXID COMPILATION

The OXID eShop compilation consists of a certain edition of OXID eShop, which is bundled

with the following modules/themes:

Flow theme

Paymorrow Module

PayPal Module

PayOne Module

OXID eShop developer documentation

2018-02-21 171

https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/glossary.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/glossary.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/glossary.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/glossary.rst
https://github.com/OXID-eSales/developer_documentation/blob/b-6.0/glossary.rst
https://github.com/OXID-eSales/oxideshop_metapackage_ce/blob/b-6.0/composer.json
https://github.com/OXID-eSales/flow_theme/
https://github.com/OXID-eSales/flow_theme/
https://github.com/OXID-eSales/flow_theme/
https://github.com/OXID-eSales/paymorrow-module
https://github.com/OXID-eSales/paymorrow-module
https://github.com/OXID-eSales/paymorrow-module
https://github.com/OXID-eSales/paypal
https://github.com/OXID-eSales/paypal
https://github.com/OXID-eSales/paypal
https://github.com/payone-gmbh/oxid-6
https://github.com/payone-gmbh/oxid-6
https://github.com/payone-gmbh/oxid-6


Summernote WYSIWYG Editor

Amazon Pay & Login for OXID eShop

Profesional Edition and Enterprise Edition compilations additionally contains module:

Visual CMS module for easy management of CMS content via drag and drop functionality.

The components of a OXID Compilation are defined in a Meta Package to ensure the best

stability and interoperability, in a compilation, the versions of all components are pinned to
a specific patch release.

VENDOR ID

For module developers it is necessary to use unique names for namespaces or classes in
their OXID eShop extensions. One way to achieve this is using an unique ID for your

company, which you can register by making a pull request to here. This is ID called a
Vendor ID. More information regarding the Vendor ID can be found on

https://oxidforge.org/en/extension-acronyms

Previous

© Copyright 2017 - 2018, OXID eSales AG.

2018-02-21 172

https://github.com/OXID-eSales/ddoe-wysiwyg-editor-module
https://github.com/OXID-eSales/ddoe-wysiwyg-editor-module
https://github.com/OXID-eSales/ddoe-wysiwyg-editor-module
https://github.com/OXID-eSales/ddoe-wysiwyg-editor-module
https://github.com/OXID-eSales/ddoe-wysiwyg-editor-module
https://github.com/bestit/amazon-pay-oxid
https://github.com/bestit/amazon-pay-oxid
https://github.com/bestit/amazon-pay-oxid
https://github.com/bestit/amazon-pay-oxid
https://github.com/bestit/amazon-pay-oxid
https://github.com/bestit/amazon-pay-oxid
https://github.com/bestit/amazon-pay-oxid
https://github.com/bestit/amazon-pay-oxid
https://github.com/bestit/amazon-pay-oxid
https://github.com/bestit/amazon-pay-oxid
https://github.com/bestit/amazon-pay-oxid
https://github.com/bestit/amazon-pay-oxid
https://github.com/bestit/amazon-pay-oxid
https://github.com/OXIDprojects/OXIDforge-pages/blob/master/extension_acronyms.md
https://oxidforge.org/en/extension-acronyms

	oxid-esales.com
	Welcome to OXID eShop developer documentation! — OXID eShop developer documentation 6.0.0 documentation
	Getting started — OXID eShop developer documentation 6.0.0 documentation
	System Architecture — OXID eShop developer documentation 6.0.0 documentation
	OXID eShop components — OXID eShop developer documentation 6.0.0 documentation
	Module resources — OXID eShop developer documentation 6.0.0 documentation
	Installation — OXID eShop developer documentation 6.0.0 documentation
	Environment preparation — OXID eShop developer documentation 6.0.0 documentation
	Install OXID eShop compilation — OXID eShop developer documentation 6.0.0 documentation
	Install OXID eShop compilation on servers, where Composer is not available — OXID eShop developer documentation 6.0.0 documentation
	Troubleshooting — OXID eShop developer documentation 6.0.0 documentation
	Autoloading Of Classes — OXID eShop developer documentation 6.0.0 documentation
	Multiple Languages — OXID eShop developer documentation 6.0.0 documentation
	Unified Namespace Classes — OXID eShop developer documentation 6.0.0 documentation
	Migrations — OXID eShop developer documentation 6.0.0 documentation
	Unified Namespace Generator — OXID eShop developer documentation 6.0.0 documentation
	Module skeleton: metadata, composer and structure — OXID eShop developer documentation 6.0.0 documentation
	Testing — OXID eShop developer documentation 6.0.0 documentation

	Module resources — OXID eShop developer documentation 6.0.0 documentation.pdf
	oxid-esales.com
	Interacting with the database — OXID eShop developer documentation 6.0.0 documentation
	Using namespaces — OXID eShop developer documentation 6.0.0 documentation


	Module resources — OXID eShop developer documentation 6.0.0 documentation.pdf
	oxid-esales.com
	metadata.php — OXID eShop developer documentation 6.0.0 documentation
	Helpers — OXID eShop developer documentation 6.0.0 documentation
	Version 1.0 — OXID eShop developer documentation 6.0.0 documentation
	Version 1.1 — OXID eShop developer documentation 6.0.0 documentation
	Version 2.0 — OXID eShop developer documentation 6.0.0 documentation
	Compatibility between different metadata versions — OXID eShop developer documentation 6.0.0 documentation
	composer.json — OXID eShop developer documentation 6.0.0 documentation
	Dependencies and autoloading with composer — OXID eShop developer documentation 6.0.0 documentation
	Install a module with composer — OXID eShop developer documentation 6.0.0 documentation
	File and folder structure — OXID eShop developer documentation 6.0.0 documentation


	module-resources.pdf
	oxid-esales.com
	Tutorials and recipes — OXID eShop developer documentation 6.0.0 documentation
	Steps for creating a basic module — OXID eShop developer documentation 6.0.0 documentation
	How to extend frontend user form? — OXID eShop developer documentation 6.0.0 documentation
	Override existing OXID eShop functionality — OXID eShop developer documentation 6.0.0 documentation
	Scripts to help porting any module to OXID eShop 6 — OXID eShop developer documentation 6.0.0 documentation


	good-practices.pdf
	oxid-esales.com
	Good practices — OXID eShop developer documentation 6.0.0 documentation
	Extend OXID eShop Class — OXID eShop developer documentation 6.0.0 documentation


	module-certification.pdf
	oxid-esales.com
	Module Certification — OXID eShop developer documentation 6.0.0 documentation
	Software tests — OXID eShop developer documentation 6.0.0 documentation
	Software quality — OXID eShop developer documentation 6.0.0 documentation
	Inter-module compatibility — OXID eShop developer documentation 6.0.0 documentation
	Documentation — OXID eShop developer documentation 6.0.0 documentation
	Terms, conditions and checklist — OXID eShop developer documentation 6.0.0 documentation


	theme-resorces.pdf
	oxid-esales.com
	Theme resources — OXID eShop developer documentation 6.0.0 documentation
	Theme Configuration — OXID eShop developer documentation 6.0.0 documentation
	How to create a theme installable via composer? — OXID eShop developer documentation 6.0.0 documentation


	Update.pdf
	oxid-esales.com
	Update — OXID eShop developer documentation 6.0.0 documentation
	Default update (minor/patch) starting from version 6.0.0 — OXID eShop developer documentation 6.0.0 documentation
	Update from 6.0.0 beta or release candidates to 6.0.0 final — OXID eShop developer documentation 6.0.0 documentation


	Major-update-from-410.pdf
	oxid-esales.com
	Major update from 4.10 / 5.3 to version 6.0.0 — OXID eShop developer documentation 6.0.0 documentation
	Files — OXID eShop developer documentation 6.0.0 documentation
	Database — OXID eShop developer documentation 6.0.0 documentation
	Modules — OXID eShop developer documentation 6.0.0 documentation
	Theme — OXID eShop developer documentation 6.0.0 documentation


	update-removed-features.pdf
	oxid-esales.com
	Removed features and new features — OXID eShop developer documentation 6.0.0 documentation
	Extracted features — OXID eShop developer documentation 6.0.0 documentation
	Libraries — OXID eShop developer documentation 6.0.0 documentation
	Miscelaneous changes — OXID eShop developer documentation 6.0.0 documentation


	conventions- glossary.pdf
	oxid-esales.com
	Conventions for writing developer documentation — OXID eShop developer documentation 6.0.0 documentation
	Glossary — OXID eShop developer documentation 6.0.0 documentation





